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1 Discussion 1

Recap from Math 33B.

Solving First Order ODEs: (Here, ′ denotes differentiation with respect to x.)

(i) Separable ODEs, ie. those in the form of

y′(x) = f(y(x))g(x).

Solution: By separation of variables, we have∫
dy

f(y)
=

∫
g(x)dx+ C

for some arbitrary constant C.

(ii) Autonomous ODEs, ie. those in the form of

y′(x) = f(y(x)).

Solution: ∫
dy

f(y)
= x+ C

for some arbitrary constant C. Note that this is obtained by setting g(x) = 1 in (i) above.

(iii) General First Order ODEs, ie. those in the form of

y′(x) = f(x)y(x) + g(x)

for some continuous functions f(x) and g(x). This is done via the use of an integrating factor. First, we
bring the term with y(x) to the left-hand side to obtain

1y′(x) +−f(x)y(x) = g(x). (1)

Then, suppose that we want to write the left-hand side in terms of d
dx (something). A good guess is that it

is the product of two terms, and hence we can retrieve the two terms on the right by applying the product
rule. Thus, we assume that it should be of the form d

dx (w(x)y(x)) . Applying the product rule, we have

(w(x)y(x))
′
= w(x)y′(x) + w′(x)y(x). (2)

By comparing both equations, we then require that

w′(x)

w(x)
= −f(x).

Hence, by separation of variables, we have

w(x) = e−
∫ x f(s)ds.

This implies that if we multiply (1) by w(x), we get (2) on the left-hand side. This implies that

(w(x)y(x))
′
= w(x)g(x)(

e−
∫ x f(s)dsy(x)

)′
= e−

∫ x f(s)dsg(x).
(3)

The above equation can now be solved by integrating both sides directly.
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Solving Second Order Linear ODEs.

We will review this by an example. Consider the ODE:

y′′(t) + 3y′(t) + 2y(t) = 0, y(0) = 1, y′(0) = 0.

(Here, ′ denotes differentiation with respect to t.) We can solve the ODE as follows.

(i) Ansatz Method. Assume that y(t) = eλt, and substitute this into the equation above to generate the
characteristic equation:

λ2 + 3λ+ 2 = 0.

Solution to the characteristic equation above: λ = −1 or λ = −2. By linearity of solutions, we have

y(t) = C1e
λ1t + C2e

λ2t

= C1e
−t + C2e

−2t.

Substitute y(0) = 1 and y′(0) = 0 to obtain two linear equations for C1 and C2 and solve them to obtain
y(t) = 2e−t + (−1)e−2t.

(ii) By converting to a 2 × 2 linear system. It is important that you know how to use this method and its
generalization to an n× n system as it will be largely used in the later parts of this class.

Let x1 = y and x2 = y′. We consider the vector x =

(
x1

x2

)
. Our goal is to convert the system into the form

of x′ = Ax where A is a 2× 2 matrix. Note that the matrix equation is equivalent to(
y
y′

)′

=

(
a b
c d

)(
y
y′

)
.

The first equation reads y′ = ay+ by′, in which we can deduce that a = 0 and b = 1. The second equation
reads −3y′ − 2y = y′′ = cy + dy′, where the left equality is obtained from the ODE of interest, while the
right equality is obtained by expanding the second component of the matrix equation. This implies that
c = −2 and d = −3. Thus, we have (

y
y′

)′

=

(
0 1
−2 −3

)(
y
y′

)
. (4)

This equation can be solved by finding the eigenvalues of A =

(
0 1
−2 −3

)
. If λ is an eigenvalue of A,

then we have det(λI − A) = 0 as the corresponding characteristic equation to be solved. One can check
that the equation simplifies to

λ2 + 3λ+ 2 = 0.

(Does this look familiar? Refer to the Ansatz method above.)
The solution to this quadratic equation is given by λ = −1 or λ = −2.
Next, we will proceed to solve for the corresponding eigenvectors for the eigenvalues −1 and −2. One

can check that the eigenvectors are given by
(
−1
1

)
and

(
−1
2

)
respectively. 2 There are “two” ways to

proceed from here. Next, recall that the solution to the system with distinct eigenvalues is given by

x(t) = C1e
λ1tv1 + C2e

λ2tv2

= C1e
−t

(
−1
1

)
+ C2e

−2t

(
−1
2

)
.

Note that this is because if we use the ansatz x(t) = Ceλtv where v is the eigenvector of A with eigenvalue
λ, it does satisfy x(t)′ = Ceλt(λv) = CeλtAv = A(Ceλtv) = Ax(t) and thus satisfy the system x′ = Ax
above.

Input x(0) =

(
1
0

)
from the given initial condition and solve the linear system to obtain C1 = −2 and

C2 = 1. We then have

x(t) = −2e−t

(
−1
1

)
+ e−2t

(
−1
2

)
2These can be obtained by substituting the relevant values of λ into λI −A and solving the system (λI −A)x = 0 for x.
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in which reading off the matrix equation from the first component yields

y(t) = 2e−t + (−1)e−2t.

Remark: Please review the 2× 2 system method in 33B if these seem foreign to you! In addition, if you are not
sure as to how you can solve for the eigenvalues and eigenvectors for general matrices, I would also suggest
reviewing materials from 33A.
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Example 1. Solve the following initial-value problems:

(i) Given

y′ =
x

y
+

1

y
, y(0) = 1,

determine y(x) for x ≥ 0.

(ii) Given
y′ = y − x, y(0) = 0,

determine y(x) for x ∈ R.

Suggested Solution:

(i) We can combine the two fractions on the right and obtain

y′(x) =
x+ 1

y
, y(0) = 1.

From here, we will solve this by separation of variables.

dy

dx
=

x+ 1

y∫ y(x)

y(0)

ydy =

∫ x

0

t+ 1dt

1

2
y2|xx=0 =

(
1

2
t2 + t

)
|t=x
t=0

1

2
y2(x) =

1

2
x2 + x+

1

2

y2(x) = (x+ 1)2

y(x) = (x+ 1).

Note that in the last step, we have to take square roots on both sides of the equation. The negative root is
rejected in view of the initial condition y(0) = 1.

(ii) This is a first-order ODE, and can always be solved using the method of integrating factor. From y′ = y − x,
we have that y′−y = −x. Then, we can compute the integrating factor to be e

∫ x(−1)ds = e−x. Thus, this implies
that

(y′ − y)e−x = −xe−x

(ye−x)′ = −xe−x

ye−x − ye−x|x=0 = −
∫ x

0

te−tdt.

Since y(0) = 0, we have that ye−x|x=0 = 0 × e0 = 0. On the other hand, the integral on the right can be
evaluated using integration by parts as follows:

−
∫ x

0

te−tdt = te−t|t=x
t=0 −

∫ x

0

e−tdt

= xe−x + e−x − 1.

Back to the ODE, this implies that ye−x = xe−x + e−x − 1 or

y(x) = x+ 1− e−x.
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Example 2. (2×2 Linear System.) Let x(t) denote the displacement of an object at time t with respect to
a fixed reference point. For a damped object with unit mass and unit damping constant, x(t) is governed
by the following differential equation:

ẍ+ ẋ = 0.

(Recall that every dot above x corresponds to taking a derivative with respect to time t once.)

(i) Use the ansatz method to obtain the general solution to the differential equation above.

(ii) Denote x =

(
x
ẋ

)
. Note that x satisfy the matrix equation

ẋ = Ax

for some 2× 2 matrix A. Determine the matrix A.

(iii) Determine the eigenvalues and eigenvectors for A.

(iv) Suppose that the object is moving at unit speed (ie ẋ(0) = 1) at the given reference point at t = 0.
Using your answer in (iii) only, determine an analytic equation for the displacement of the object
from the reference point (ie x(0) = 0) with respect to time, x(t), for t ∈ R.

Suggested Solution:

(i) Consider the ansatz x(t) = eλt. Then, we have ẋ(t) = λeλt and ẍ(t) = λ2eλt. Plugging this into the ODE, we
obtain

(λ2 + λ)eλt = 0.

Since eλt ̸= 0 for any t ∈ R, we can divide it on both sides to obtain

λ2 + λ = λ(λ+ 1) = 0.

The solutions are λ = 0 and λ = −1. This implies that the general solution is given by

x(t) = Ae0t +Be−t = A+Be−t

for arbitrary constants A and B.

(ii) The matrix equation reads

ẋ =

(
ẋ
ẍ

)
=

(
a b
c d

)(
x
ẋ

)
.

We can see that a = 0 and b = 1. Using the fact that ẍ = −ẋ, we have c = 0 and d = −1. Thus, we have

A =

(
0 1
0 −1

)
.

(iii) If λ is an eigenvalue of A, it must then satisfy det(λI −A) = 0. Equivalently, this is given by∣∣∣∣λ −1
0 λ+ 1

∣∣∣∣ = 0

λ(λ+ 1) = 0.

The eigenvalues are 0 and −1. For λ = 0, the system reduces to
(
0 −1
0 1

)
with eigenvector

(
1
0

)
. For λ = −1,

the system reduces to
(
−1 −1
0 0

)
with eigenvector

(
1
−1

)
.

(iv) The general solution for a 2× 2 linear system with two distinct eigenvalues is given by

x(t) = C1e
λ1tv1 + C2e

λ2tv2

= C1

(
1
0

)
+ C2e

−t

(
1
−1

)
.

(5)
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The physical initial conditions translate to ẋ(0) = 1 and x(0) = 0, or as a vector, x(0) =

(
0
1

)
. The system at

t = 0 thus becomes (
0
1

)
=

(
C1 + C2

−C2

)
and thus C2 = −1 and C1 = 1. Reading off the first component of the matrix equation in Equation (5), we have
x(t) = 1− e−t.
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Example 3. Given
dy

dx
= y2x(x+ 1) + x2 + x+ y2 + 1, y(0) = 1,

determine y(x) for x sufficiently close to 0.a

aThis is required for the solution to exist on the entire interval - though you do not have to worry about this now.

Suggested Solution:

The equation can be re-written as

dy

dx
= (x2 + x+ 1)(y2 + 1), y(0) = 1.

By separation of variables, we have ∫ y(x)

y(0)

dy

1 + y2
=

∫ x

0

t2 + t+ 1dt

arctan (y)− arctan (1) =
1

3
x3 +

1

2
x2 + x

y(x) = tan

(
1

3
x3 +

1

2
x2 + x+

π

4

)
.
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2 Discussion 2

Flows, Stability, and Phase Portrait.

Given a first-order system ẋ = f(x), here are some key terms you should know.
Key Term Definition/Idea

Flow at a point x = a Sign of ẋ(a). The flow is to the right (left) if ẋ(a) > 0 (< 0).
Fixed Points x∗ where f(x∗) = 0

Fixed Point x∗ is Stable ẋ(x+
∗ ) > 0 and ẋ(x−

∗ ) < 0; Flows converge towards the fixed point.
Fixed Point x∗ is Unstable ẋ(x+

∗ ) < 0 and ẋ(x−
∗ ) > 0; Flows diverge from the fixed point.

Fixed Point x∗ is Half-stable ẋ(x+
∗ ) and ẋ(x−

∗ ) are of the same sign;
Flows diverge in one direction and converge in the other.

Phase Portrait (1D case) A diagram that indicates flows along the horizontal axis,
together with the corresponding fixed points.

The following shows the graph of ẋ against x, together with the corresponding phase portrait.

Stable (Represented with a solid circle):

ẋ

stable

Unstable (Represented with a hollow circle):

ẋ

unstable

Half-Stable (Represented with a half-filled circle, with the filled half corresponds to a stable point from that
side):

ẋ

half-stable

Hence, by sketching the graph of f(x) against x and computing the relevant direction of the arrows (ie ẋ =
f(x) > 0 implies arrow pointing to the right; < 0 for the left, etc), we can determine the stability of the given
fixed point.
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Alternatively, we can determine the stability of a given fixed point x∗ by computing f ′(x∗) as follows:

Sign of f ′(x∗) Nature of Fixed Point
< 0 Stable
> 0 Unstable
= 0 Indeterminate!

The following shows a brief proof as to why it works. (It is important to know how the proof works.)

Let η = x− x∗. Then, η̇ = ẋ (since x∗ does not depend on time) and by Taylor’s Remainder Theorem, we have

f(x) = f(x∗) + f ′(x∗)(x− x∗) +O((x− x∗)
2) ≈ f(x∗) + f ′(x∗)(x− x∗)

for x close enough to x∗.3 Since f(x∗) = 0 by definition of fixed point, combining all of the above, we have

η̇ = ẋ = f(x) ≈ f ′(x∗)η. (6)

Locally at x ≈ x∗, this means that the phase portrait is a straight line that cuts through x = x∗ with gradient
f ′(x∗) (which is why it is literally known as linearization!). Matching with the diagrams for the 3 different types
of stability above gives the required nature for stable and unstable fixed points!

The dynamics of how η = x− x∗ varies with time can be approximated by solving the ODE (6).

Note: If f ′(x∗) = 0, this implies that we will require higher-order expansions (ie η̇ ≈ f ′′(x∗)
2 η2 etc) to investigate

the phenomenon better. Alternatively, we can turn potential functions.

Potential Functions.

Given ẋ = f(x), let ẋ = − d
dxV (x) where V (x) is the potential function4. Then, we have

− d

dx
V (x) = f(x). (7)

Some properties:

• We can obtain the equation for a potential function V (x) by solving the ODE (7) in x.

• Note that upon integrating, there is an arbitrary constant C. Note that it does not matter what value of C
you pick here.

• Theorem: V (x(t)) is non-increasing with time.
At points that are not fixed points, V (x(t)) is strictly decreasing with time.

• From the above fact, we can sketch the potential function and view it as though an object is falling through
the “graph”.

Note that a fixed point (corresponds to f(x∗) = 0) corresponds to a turning point for V (x) (since by (7),
d
dxV (x∗) = −f(x∗) = 0). Combining with the last bullet point above, we have the following:

Nature of Isolated Turning Points of V (x) Nature of Fixed Point
Local Minimum Stable
Local Maximum Unstable

Inflexion Half Stable5

3Here, if y = O(|x|k), it means that |y| ≤ C|xk| for some C > 0. As an applied mathematician, this just means O(|x|k) ≈ C|x|k. Thus,
if x is close enough to x∗, we have x − x∗ is small and thus, (x − x∗)2 is even smaller. This thus “justifies” that we can drop the second
order term.

4Disambiguation: The potential energy V (x(t)) is a function of V with respect to time; The potential function V (x) is a function of V
with respect to space x. (Both are just colloquially potentials, represented by V .)

5This is different compared to the table above, where f ′(x∗) = 0 gives “indeterminate”. This is because equivalently, V ′′(x∗) = 0 does
not necessarily implies that x∗ is an inflexion point! Thus, to check if something is an inflexion point, your best bet would be the first
derivative test.
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Corresponding graphs of potential functions for stable/unstable/half-stable points (use the small little ball along
the curve to help you visualize trajectories and the stability of the fixed points!):

V (x)

stable

V (x)

unstable

V (x)

half-stable

Numerical Methods.

Consider {
ẋ(t) = f(x(t)),

x(0) = x0.

We denote the numerical solution at the n-th iteration as xn. Fix a time step ∆t, we have

• Euler’s Method: xn+1 = xn + f(xn)∆t.

• Heun’s Method/Improved Euler’s Method: x̃n+1 = xn+f(xn)∆t and xn+1 = xn+
1
2 [f(xn)+f(x̃n+1)](∆t).

Notation: If the starting time is at t = 0, with step size ∆t,

• xn represents the approximate value of the solution at t = n∆t, obtained by our numerical method.

• x(n∆t) represents the exact value of the solution at time t = n∆t.

We shall see some examples of the concepts above in the following pages.
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Example 4. Consider the following first-order system:

ẋ = (1− x2)(x+ 1).

(i) Show that x = 1 is a stable fixed point.

(ii) Determine any other fixed point(s) (if any) and the corresponding stability of the fixed point(s).

(iii) Draw a phase portrait corresponding to this system.

(iv) Overlay your sketch with the corresponding potential function.

(v) Consider the initial condition x(0) = 0.99. By linearizing the given equation and using the fact
shown in (i), determine an approximate value of time t such that x(t) = 0.999.

Suggested Solution:

(i), (ii), and (iii). Note that ẋ = f(x) = (1− x2)(x+ 1) = (1− x)(1 + x)(x+ 1) = −(x+ 1)2(x− 1).

Hence, the roots of this equation are given by x = ±1. In particular, x = 1 is a root of the equation and thus is
a fixed point of the system.
Next, we compute f ′(x) = −2(x+ 1)(x− 1)− (x+ 1)2, and see that

• f ′(1) = −4 < 0, and hence is a stable fixed point.

• f ′(−1) = 0. We would need to sketch the phase portrait of the system to determine its stability.

Indeed, the graph of ẋ against x is given by

−1

half-stable
1

stable

ẋ

so x = −1 is a half-stable point.
Note that if the question asks for phase portrait, so technically speaking, only the following is required.

−1

half-stable
1

stable

(iv) The sketch of phase portrait with the potential function overlayed as represented in blue is as follows:

−1

half-stable
1

stable

V (x)
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Note that we can sketch the potential function immediately if we already knew the stability of each of the fixed
points and the corresponding flow. Alternatively, we can solve −dV

dx = f(x) for V (x) and plot the graph accord-
ingly to check that the potential function looks roughly like the one that we have drawn above (up to our choice
of the arbitrary constant C, that is, translation in the y− direction).

(v) The linearized equation is given by
η̇ = f ′(1)η = −4η

with η(t) = x(t) − x∗ = x(t) − 1, and that f ′(1) is computed in (i). Note that the ODE is separable, and hence
we can obtain the following solution

η(t) = η(0)e−4t.

Set η(0) = x(0)− 1 = 0.99− 1 = −0.01 and η(t) = 0.999− 1 = −0.001.

Thus, the time required is given by
−0.001 = −0.1e−4t

10 = e4t

t =
1

4
ln(10) .
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Example 5. Consider the equation {
ẋ = x2

x(0) = 0.5.

(i) Use Euler’s method with step size ∆t = 0.2 to approximate x(1). Tabulate your results, keeping at
least six decimal places.

(ii) Find the true value of x(1) by solving the differential equation above and compute the error of
your approximation in part (i), giving your answer to six decimal places.

Suggested Solution:
(i) Euler’s method gives the following scheme

xn+1 = xn + f(xn)∆t

with f(xn) = x2
n, x0 = 0.5 and ∆t = 0.2. The value of x at t = 1 corresponds to x5. The value at each iteration

is shown below.

n xn

1 0.55
2 0.6105
3 0.685042
4 0.778899

5 0.900235

(ii) Note that the equation is separable. Hence, we have

dx

dt
= x2∫

1

x2
dx =

∫
dt

− 1

x
= t+ C.

Using the fact that x(0) = 0.5, we have that C = −2. Thus, we have

x(t) =
1

2− t
.

This implies that x(1) = 1. The error of approximation is thus given by

|x(1)− x5| = 0.099765 .
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3 Discussion 3

Theorems on Existence and Uniqueness of ODEs and Finite-Time Blowup.

Some terminologies/results from 131A (Analysis) that you might find useful:

• Let f : [a, b] → R be a function (with a < b). We say that f is continuous at (a point) c ∈ [a, b] if
limx→c f(x) = f(c). Rigorously, this means that for all ε > 0, there exists δ > 0 (possibly depending on ε)
such that for all x ∈ [a, b] and |x− c| < δ, we have |f(x)− f(c)| < ε.

• We say that a function is continuous on an interval6 I if it continuous at the point x for all x ∈ I.

• Given an interval I ⊆ R, we say that f is Lipschitz (continuous) on I if there exists a constant L > 0 such
that

|f(x)− f(y)| ≤ L|x− y|

for all x, y ∈ I. The constant L is also known as the Lipschitz constant.

• (Extreme Value Theorem.) If f : [a, b] → R is continuous on the closed interval [a, b], then it is bounded
on [a, b]. This means that there exists a constant M > 0 such that

|f(x)| ≤ M

for all x ∈ [a, b].

• (Mean Value Theorem.) If f is continuous on [a, b] and differentiable on (a, b), then there exists a
c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

• On the interval I = [a, b] for some a < b, we have

Continuously Differentiable =⇒ Lipschitz Continuous =⇒ Continuous.

• (Triangle Inequality.) For all x, y ∈ R, we have

||x| − |y|| ≤ |x− y| ≤ |x|+ |y|.

• (Triangle Inequality - Integral Version) For an integrable function f , we have∣∣∣∣∣
∫ b

a

f(x)dx

∣∣∣∣∣ ≤
∫ b

a

|f(x)|dx.

Theorem 6. (Cauchy-Peano Existence Theorem.) Let f : (a, b) → R be continuous and x0 ∈ (a, b).
Then, there exists some T > 0 and a solution x : [−T, T ] → R to the ODEa:{

ẋ = f(x)

x(0) = x0.

aODE is an abbreviation for “Ordinary Differential Equation”, or just differential equation in our class.

Theorem 7. (Picard’s Existence and Uniqueness Theorem.) Let f : (a, b) → R be Lipschitz continuous
and x0 ∈ (a, b). Then, there exists some T > 0 and a unique local solution x : [−T, T ] → R to the ODE:{

ẋ = f(x)

x(0) = x0.

6Intervals can possibly be open/closed, such as [a, b], or (a, b), or even those of a mixed type like (a, b] etc.
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The proof of this is done via Picard’s iteration, in which we have

xn+1 = x0 +

∫ t

0

f(xn(s))ds

and we hope that the iteration converges to x(t), the solution to the given ODE above.

Remark: If f : R → R is Lipschitz continuous7, then there exists a unique global solution to{
ẋ = f(x)

x(0) = x0.

Theorem 8. (Comparison of Solutions.) Let f ≤ g be smooth and let x0 ≤ y0. Suppose x and y are the
solutions to the ODEs: {

ẋ = f(x)

x(0) = x0

and

{
ẏ = g(y)

y(0) = y0

on a time interval [0, T ]. Then, x(t) ≤ y(t) for all time t ∈ [0, T ].

One mechanism in which a solution does not exist is that it exhibits finite-time blow-up. In other words, we see
that |x(t)| → +∞ as t → T for some T ∈ R (finite time).

Often, we can use the comparison of solutions to obtain a finite-time blowup argument. We shall see an example
below.

7The difference here is that we are looking at f Lipschitz on the entire domain of the function with the same Lipschitz constant.
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Bifurcations I: Saddle-Node and Transcritical Bifurcations.
Consider a system

ẋ = f(x, r)

where r refers to a parameter of the system. Suppose that the system has a smooth curve of fixed points
(x, r) = (x∗(r), r) for r in some interval. If the stability of the fixed point x∗(r) changes at some r = r∗, we say
that the system undergoes bifurcation at (x, r) = (x∗, r∗).

Roughly speaking, at some critical value of the parameter r = r∗, we see a change in the characteristics of the
fixed point(s) denoted by x∗. These can be visualized on the x∗ − r plane, where r is the contentious parameter
for bifurcation, in which for each value of r, we draw a phase portrait in x and stack them continuously while
emphasizing the fixed points.

For instance, here are two common types of bifurcations (we shall cover one more in the next discussion).

Saddle-Node: (Mutual destruction/creation of fixed points), for instance, ẋ = −(r + x2).
Bifurcation point: (x∗, r) = (0, 0).

x∗

r
half-stable at (0, 0)

Stable

Unstable

Indeed, to see that the above bifurcation diagram makes sense, we look at three key regimes (r < 0, r = 0, and
r > 0) and draw the phase portraits vertically (so that we can observe how it gets stacked).

r = −1

x

1, Stable

−1, Unstable

0, Half-Stable

r = 0

x

r = 1

x

ẋ = −(−1 + x2)

= −(x− 1)(x+ 1)

ẋ = −x2 ẋ = −(1 + x2) < 0 for all x
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Transcritical: (“Transfer of critical points”), for instance, ẋ = rx− x2.
Bifurcation point: (x∗, r) = (0, 0).

x∗

r
half-stable at (0, 0)Stable

Unstable

Stable

Unstable

Indeed, to see that the above bifurcation diagram makes sense, we look at three key regimes (r < 0, r = 0, and
r > 0) and draw the phase portraits vertically (so that we can observe how it gets stacked).

r = −1

x

r = 0

x

r = 1

x

ẋ = −x− x2

= −x(x+ 1)

ẋ = −x2 ẋ = x− x2

= −x(x− 1)

0, Stable

−1, Unstable

0, Half-Stable

1, Stable

0, Unstable

The following theorem might help with the identification of bifurcation points.

Theorem 9. (Identification of Possible Bifurcation Points.)
If the system

ẋ = f(x, r)

has a bifurcation point at (x, r) = (x∗, r∗), then

f(x∗, r∗) = 0 and
∂

∂x
f(x∗, r∗) = 0.

Intuitively, the first equation corresponds to solving the fixed point f(x∗) = 0. Furthermore, recall that
f ′(x∗) < 0 corresponds to a stable fixed point, while f ′(x∗) > 0 corresponds to an unstable fixed point. Thus,
any change in stability should potentially occur at this transition point where f ′(x∗) = 0.8

Note that the converse might not necessarily hold. Thus, if we solve the above equations f = 0 and ∂
∂xf = 0,

we have contentious bifurcation points (x∗, r∗). To determine if these are actually bifurcation points, we will
have to resort to graphing methods. We shall go through such an example below.

8Note that we wrote f ′(x∗) above since f is a function of one variable, x. If we introduce the bifurcation parameter r, we now have
ẋ = f(x, r), where f is a function of two variables. Here, “f ′(x∗)” now refers to differentiating with respect to x while keeping r fixed,
which is precise the definition of the partial derivative ∂f

∂r
(x, r)!
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Example 10.

(i) Show that {
ẏ = y5

y(0) = 1

exhibits finite time blow-up.

(ii) Hence or otherwise, show that {
ẋ = 1 + x5

x(0) = 1

exhibits finite time blow-up.

Suggested Solution:

(i) By separation of variables, one can show that with y(0) = 1, we have

y(t) =
1

(1− 4t)
1
4

.

Hence, we observe that y(t) → ∞ as t → 1
4

−, thus exhibiting finite time blow-up.

(ii) Since 1 + x5 ≥ x5 for all t ≥ 0, by comparison of solutions (Theorem 8), we have that x(t) ≥ y(t) for
all t such that the solution y(t) exists. Since y(t) → ∞ as t → 1

4

−, we have by the above inequality that
x(t) → ∞ as t → 1

4

−. Hence, x(t) also exhibits finite time blow-up.
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Example 11. Consider the following system:{
ẋ = f(x)

x(0) = 1.

where f : R → R is a continuously differentiable function satisfying |f ′(w)| ≤ 2e−w2

for all w ∈ R.

(i) Show that f is Lipschitz on R.

(ii) Using your answer in (i), explain why we can deduce that the above system does not exhibit
finite-time blowup.

Suggested Solution:

(i) From the given inequality, we see that |f ′(w)| ≤ 2e−w2 ≤ 2 since e−w2 ≤ e0 = 1 for all w ∈ R. Thus, take
any x, y ∈ R, we then have by mean value theorem that there exists some ξ between x and y such that

f(x)− f(y) = f ′(ξ)(x− y).

Taking absolute values on both sides, we have

|f(x)− f(y)| = |f ′(ξ)||(x− y)|.

Using the fact that |f ′(w)| ≤ 2 for all w and in particular is true at w = ξ, we have |f ′(ξ)| ≤ 2. Thus, we
have

|f(x)− f(y)| = |f ′(ξ)||(x− y)| ≤ 2|x− y|.

By definition, we deduce that f is Lipschitz, with Lipschitz constant 2.

(ii) By Picard’s theorem (see Theorem 6 and its remark), there exists a global solution to the given system for
all t > 0. In particular, we should not expect that the system exhibits finite-time blowup.
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Example 12. Consider the system ẋ = r − x − e−x for r ∈ R. Sketch all qualitatively different vector
fields that occur as r is varied, determine the bifurcation point(s) (x∗, r) if it exists, identify the type of
bifurcation, and sketch the bifurcation diagram of x∗ against r.

Suggested Solution:

Using the theorem of identification of possible bifurcation points, ie Theorem 9, we focus on points (x∗, r) that
are solutions to f = 0 and ∂

∂xf = 0. These correspond to{
r − x− e−x = 0,

−1 + e−x = 0.

In this case, if one tries to solve the system, one should obtain the solution as (x∗, r) = (0, 1). This prompts us
to sketch phase portraits for r < 1, r = 1, and r > 1 to determine if it is an actual bifurcation point and the type
of bifurcation.

However, note that it might be challenging to sketch r − x − e−x directly. Thus, one can turn to graphical
methods for this. Instead, we consider sketching the graphs r − x and e−x. If the graph for r − x is above e−x,
this implies that ẋ = r − x− e−x > 0 and vice versa.
Hence, we have for ẋ = r − x− e−x,

unstable

ẋ

stable

r − x

e−x

r < 1

ẋ

half-stable

1

r − x

e−x

r = 1

ẋ

r − x

e−x

r > 1

and thus (x∗, r) = (0, 1) is indeed a bifurcation point and exhibits saddle-node bifurcation.

To sketch the bifurcation diagram, we plot a graph of x∗ against r as a “collection of different phase portraits”
as shown below:
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x∗

r
half-stable at (0, 1)

Stable

Unstable
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4 Discussion 4

Bifurcations II: Pitchfork Bifurcations and General Theory.

Consider a system
ẋ = f(x, r)

where r refers to a parameter of the system. Suppose that the system has a smooth curve of fixed points
(x, r) = (x∗(r), r) for r in some interval. If the stability of the fixed point x∗(r) changes at some r = r∗, we say
that the system undergoes bifurcation at (x, r) = (x∗, r∗).

Roughly speaking, at some critical value of the parameter r = r∗, we see a change in the characteristics of the
fixed point(s) denoted by x∗. These can be visualized on the x∗ − r plane, where r is the contentious parameter
for bifurcation, in which for each value of r, we draw a phase portrait in x and stack them continuously while
emphasizing the fixed points.

Combining with the two other types of bifurcations covered in the last discussion, here are three common types
of bifurcations.

Saddle-Node: (Mutual destruction/creation of fixed points), for instance, ẋ = r + x2.
Bifurcation point: (x∗, r) = (0, 0).

x∗

r
half-stable at (0, 0)

Unstable

Stable

Indeed, to see that the above bifurcation diagram makes sense, we look at three key regimes (r < 0, r = 0, and
r > 0) and draw the phase portraits vertically (so that we can observe how it gets stacked).

r = −1

x

1, Unstable

−1, Stable

0, Half-Stable

r = 0

x

r = 1

x

ẋ = −1 + x2

= (x− 1)(x+ 1)

ẋ = x2
ẋ = 1 + x2 > 0 for all x
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Transcritical: (“Transfer of critical points”), for instance, ẋ = rx− x2.
Bifurcation point: (x∗, r) = (0, 0).

x∗

r
half-stable at (0, 0)Stable

Unstable

Stable

Unstable

Indeed, to see that the above bifurcation diagram makes sense, we look at three key regimes (r < 0, r = 0, and
r > 0) and draw the phase portraits vertically (so that we can observe how it gets stacked).

r = −1

x

r = 0

x

r = 1

x

ẋ = −x− x2

= −x(x+ 1)

ẋ = −x2 ẋ = x− x2

= −x(x− 1)

0, Stable

−1, Unstable

0, Half-Stable

1, Stable

0, Unstable
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Supercritical Pitchfork:

Example: ẋ = rx− x3.
Bifurcation point: (x∗, r) = (0, 0).

x

r
Stable at (0, 0)Stable Unstable

Stable

Stable

Indeed, to see that the above bifurcation diagram makes sense, we look at three key regimes (r < 0, r = 0, and
r > 0) and draw the phase portraits vertically (so that we can observe how it gets stacked).

r = −1

x

r = 0

x

r = 1

x

ẋ = −x− x3

= −x(1 + x2)

one root, x = 0

ẋ = −x3 ẋ = x− x3

= −x(x− 1)(x+ 1)

three roots, x = −1, 0, 1

0, Stable 0, Stable

1, Stable

0, Unstable

−1, Stable
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Subcritical Pitchfork:

Example: ẋ = rx+ x3.
Bifurcation point: (x∗, r) = (0, 0).

x

r
Unstable at (0, 0)Stable Unstable

Unstable

Unstable

Indeed, to see that the above bifurcation diagram makes sense, we look at three key regimes (r < 0, r = 0, and
r > 0) and draw the phase portraits vertically (so that we can observe how it gets stacked).

r = −1

x

r = 0

x

r = 1

x

ẋ = −x+ x3

= x(x− 1)(x+ 1)

three roots, x = −1, 0, 1

ẋ = x3
ẋ = x+ x3

= x(1 + x2)

= x× “ > 0”

one root, x = 0

0, Unstable0, Unstable

1, Unstable

0, Stable

−1, Unstable

Remark: How I would remember these:

• Think of more stable branches as good, so super → “more stable”.

• Unstable outer fork - Subcritical.
(Sub: More unstable branches before colliding - a suboptimal case.
Alternatively, overall, we have more unstable branches.
Indeed, we can check that there are 3 unstable branches and 1 stable branch in the subcritical pitchfork
diagram above. )

• Stable outer fork - Supercritical.
(Sup: More stable branches before colliding - a superoptimal case.
Alternatively, overall, we have more stable branches. Indeed, we can check that there are 3 stable branches
and 1 unstable branch in the supercritical pitchfork diagram above. )
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The following theorem might help with the identification of bifurcation points (and serve as a “double-checking”
mechanism for drawing bifurcation diagrams/used to flag potential bifurcation points.)

Theorem 13. (Identification of Possible Bifurcation Points.)
If the system

ẋ = f(x, r)

has a bifurcation point at (x, r) = (x∗, r∗), then

f(x∗, r∗) = 0 and
∂

∂x
f(x∗, r∗) = 0.

Intuitively, the first equation corresponds to solving the fixed point f(x∗) = 0. Furthermore, recall that
f ′(x∗) < 0 corresponds to a stable fixed point, while f ′(x∗) > 0 corresponds to an unstable fixed point. Thus,
any change in stability should potentially occur at this transition point where f ′(x∗) = 0.9

Note that the converse might not necessarily hold. Thus, if we solve the above equations f = 0 and ∂
∂xf = 0,

we have contentious bifurcation points (x∗, r∗). To determine if these are actually bifurcation points, we will
have to resort to graphing methods.

9Note that we wrote f ′(x∗) above since f is a function of one variable, x. If we introduce the bifurcation parameter r, we now have
ẋ = f(x, r), where f is a function of two variables. Here, “f ′(x∗)” now refers to differentiating with respect to x while keeping r fixed,
which is precise the definition of the partial derivative ∂f

∂r
(x, r)!
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The following are some examples related to the above concepts on bifurcations, and some concepts related to
those covered in Discussions 2 and 3 (which would serve as some sort of review problems for the midterm).

Example 14. Find a function f(x) such that ẋ = f(x) has exactly the following fixed points:

• A stable fixed point at −1,

• An unstable fixed point at 0,

• A stable fixed point at 1,

• A half-stable fixed point at 3,

and draw the corresponding phase portrait.

Suggested Solution:

f(x) = −(x+ 1)x(x− 1)(x− 3)2.

x

ẋ

310−1
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Example 15. A system ẋ = f(x, r) has a bifurcation at x = 0, r = 0. A potential function for f has the
following graphs:

x

V (x)

x

V (x)

x

V (x)

r < 0 r = 0 r > 0

Sketch the bifurcation diagram and identify the type of bifurcation.

Suggested Solution:

By inspection, we have

• For r < 0, two fixed points, with the negative fixed point being unstable and the positive fixed point being
stable.

• For r = 0, one fixed point, with the fixed point at zero being half-stable (stable from the right).

• For r > 0, no fixed points.

Consequently, we have a saddle-node bifurcation at (x∗, r) = (0, 0). The bifurcation diagram is given by

x∗

r
saddle-node bifurcation at (0, 0)

Stable

Unstable
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Example 16. Consider the system {
ẋ = (x− 1)

1
4

x(0) = 1.

(i) Find two different solutions to the system above.

(ii) Explain why your answer in (i) does not contradict Picard’s theorem.

Suggested Solutions:

(i) One solution is given by x1(t) = 1 for all time t. To find the second solution, we would have to solve the
equation by separation of variables. This yields∫

dx

(x− 1)
1
4

=

∫
dt

4

3
(x− 1)

3
4 = t+ C.

Using x(0) = 1, we have C = 0. Thus, we have for all t ∈ R

x2(t) = 1 +

(
3

4
t

) 4
3

.

(ii) This does not contradicts Picard’s theorem as f(x) = (x− 1)
1
4 is not Lipschitz at x = 1, so solutions in the

vicinity of t = 0 need not be unique.

(Alternatively, we know that a corollary of Picard’s theorem is that if f is continuously differentiable, then
we will have a unique local solution. We can instead easily check that f(x) = (x− 1)

1
4 is not continuously

differentiable at x = 1; in fact, it is not even differentiable!)

(Proof that it is indeed not Lipschitz at x = 1. Suppose for a contradiction that it is, then we must have
|f(x)− f(1)| ≤ L|x− 1| for all x ∈ R. Equivalently, we must have

|(x− 1)
1
4 − (1− 1)

1
4 | ≤ L|x− 1|

|x− 1| 14 ≤ L|x− 1|
1

|x− 1| 34
≤ L.

Hence, if we pick x to be sufficiently close to 1 (i.e. x → 1), we see that |x− 1| → ∞, contradicting that it
must satisfy the above upper bound for all x ∈ R.)
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Example 17. Sketch a global bifurcation diagram for the equation

ẋ = (x2 + r2 − 1)(x2 − 4).

Be sure to label all branches with their stability and classify all bifurcation points.

Suggested Solution: The following illustrates a series of steps that you should do if you encounter a problem
that asks you to sketch a bifurcation diagram.

Step 1 - Identify all fixed points (as a function of r.)

Indeed, we have f(x) = (x2 + r2 − 1)(x2 − 4) = 0 implies that x2 = 1− r2 or x2 = 4. The latter yields x = ±2
as the fixed points (regardless of the values of r). For the former, we observe the following phenomenon:

• x2 = 1− r2 has no roots if 1− r2 < 0, that is, r2 > 1, or equivalently, r > 1 or r < −1.

• x2 = 1− r2 has only one root if 1− r2 = 0, that is, when r = ±1. The repeated root is x = 0.

• x2 = 1 − r2 has two roots if 1 − r2 > 0, that is, r2 < 1, or equivalently, −1 < r < 1. We denote them by
x− = −

√
1− r2 and x+ =

√
1− r2. The two roots are x = ±

√
1− r2. In this case, the roots are always

between −1 and 1, and will never overlap with the two other roots x = ±2 obtained from the other
equation.

Step 2 - Flag all possible bifurcation points by analyzing the change in the number of fixed points.

From the above analysis, we see that r = −1 and r = 1 are possible bifurcation points (since that corresponds
to the change in the number of roots to the equation x2 = 1−r2, and hence possibly change in relevant stability).

Step 3 - For each possible bifurcation point, sketch phase portraits for parameters close to these points.

For r = −1, we see that

x x x

(x2 − 4):
(x2 + r2 − 1):
Overall Sign:

r < −1

+

+

+

+

−
−

+

+

+

−2 2

r = −1

+

+

+

+

0

0

+

+

+

−2 20

1 > r > −1

+

+

+

−
+

−

−
−
+

−
+

−

+

+

+

−2 2x− x+

In the above, we are hinging on the fact that to draw a phase portrait, you really only need the sign of each of
the terms contributing to the function ẋ = f(x) = (x2− 4)(x2+ r2− 1). From the above phase portraits, we can
see that x = 0, r = −1 corresponds to a saddle-node bifurcation (ie two new critical points of opposite stability
are created out of “nothing”).

For r = 1 (read the diagram from right to left for increasing r), we see that

x x x

(x2 − 4):
(x2 + r2 − 1):
Overall Sign:

r > 1

+

+

+

+

−
−

+

+

+

−2 2

r = 1

+

+

+

+

0

0

+

+

+

−2 20

1 > r > −1

+

+

+

−
+

−

−
−
+

−
+

−

+

+

+

−2 2x− x+
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From the above phase portraits, we can see that x = 0, r = 1 corresponds to a saddle-node bifurcation (ie two
critical points of opposite stability are annihilated).

Step 4: Identify curves of bifurcation.

From Step 1, we note that x∗ = ±2 and x2
∗ + r2 − 1 = 0. These are curves in which we will observe fixed points

to fall onto. In fact, the latter equation can be written as x2
∗ + r2 = 1, which corresponds to the equation of a

circle centered at the origin with radius 1. The former corresponds to two lines x∗ = ±2.

Step 5: Combined everything to draw the global bifurcation diagram.

r

x∗

1−1

Unstable

Stable

Stable

Unstable

2

−2

1

−1

Saddle-node at (1, 0)Saddle-node at (−1, 0)
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Example 18. (Exercise 2.5.3 in Strogatz, Modified.)

(i) Consider the equation {
ẏ = y3

y(0) = y0.

Show that the equation above exhibits finite time blow-up for any y0 > 0.

(ii) Consider the equation {
ẋ = rx+ x3

x(0) = x0,

where r > 0 is fixed. Show that |x(t)| → ∞ in finite time, starting from any initial condition x0 ̸= 0.

Suggested Solution:

(i) We do so by solving the equation by separation of variables. Indeed, this yields

− 1

y2
= t+ C.

Plugging y(0) = 1, we have −1 = C. This thus implies that

1

y2
= 1− t.

Hence, we see that y → ∞ if 1
y2 → 0, and this happens if 1− t → 0, or in other words, t → 1. Hence, we

indeed observe that the above equation exhibits finite time blow-up.

(ii) Note that if x0 = x(0) > 0, then ẋ(0) = rx(0) + x(0)3 > 0 and by continuity of rx+ x3, x is increasing in
an interval containing 0. We can repeat this argument to show that x is increasing for all t ≥ 0 and thus
x(t) ≥ x(0) > 0. Thus, we can show that rx + x3 ≥ x3. By (i) and comparison theorem (pick y0 = x0 so
we start from the same initial data), this implies that x(t) ≥ y(t) for all t. In particular, at time T such
that y(t) → ∞ as t → T , we then have x(t) → ∞ as t → ∞, and thus x(t) blows up in finite time (ie
|x(t)| → ∞).

For x0 = x(0) < 0, we note that ẋ(0) = rx(0) + x(0)3 < 0 since r > 0. Define z(t) = −x(t) (Intuition:
blows up in the negative direction). Thus, we have{

ż = rz + z3

z(0) = −x0,

since we have ż = −ẋ = −rx− rx3 = r(−x)+ r(−x)3 = rz+ z3 with z(0) = −x(0) = −x0 > 0. We repeat
the exact same argument in the previous part to show that z(t) → ∞ in finite time. Since z(t) = −x(t),
this implies that x(t) → −∞ in finite time. Nonetheless, we have |x(t)| → ∞ and we are done.
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5 Discussion 5

Non-dimensionalization.
In any physical (and/or social science) models, the corresponding (differential) equations tend to model certain
(physical) phenomena. In the context of ODEs, a first order ODE has the following general form:

dy

dx
= f(y(x), x).

In the equation above, we notice that there are two types of variables, mainly

• Independent variable, x.

• Dependent variable (since it depends on x via the differential equation, the independent variable), given
by y.

These physical variables tend to have their corresponding units. For instance, we can describe the velocity of
an object with mass m falling through a viscous fluid with drag coefficient b from a point, with velocity v(t)
depending on time t via the following ODE:

mv′(t) = −mg + b(v(t))2,

where g is the acceleration due to free-fall. It is important to identify which of the following are constants - in
this case, m, b and g are constants (parameters). Here, we assume that these constants are positive to avoid
technical difficulties. The dependent variable is given by v and the independent variable is given by time t.
As both the dependent and the independent variables have physical units, this motivates us to consider the
following non-dimensionalized units:

τ =
t

T
and ν(τ) =

v(τ(t))

V
.

Note that T and V are (possibly dimensional-ful) constants (such that τ and ν are dimensionless). Furthermore,
note that such a substitution is true for all T and V , and thus we have the freedom to choose T and V as
we like. Using the equations above, we have:

d

dt
=

dτ

dt

d

dτ
=

1

T

d

dτ
and ν =

v

V
.

Plug them into our original equation, we have

m
d

dt
v(t) = −mg + b(v(t))2

m
1

T

d

dτ
ν(τ)V = −mg + b(ν(τ)V )2

mV

T
ν′(τ) = −mg + bV 2ν(τ)2

Note that we have two degrees of freedom (ie free to choose T and V ). Furthermore, we can always divide
the equation via a common constant to make one of the terms in the equation above dimensionless. This
implies that we can have a total of 3 dimensionless terms, ie the equation above can be entirely dimensionless!
Following such a logic, we first divide the entire equation by mg to obtain:

V

gT
ν′(τ) = −1 +

bV 2

mg
ν(τ)2.

Using my rights to choose T and V , I can pick them such that the coefficients in front of ν′ and ν2 are equals to
1. Equivalently, this implies that

bV 2

mg
= 1 → V =

√
mg

b

and
V

gT
= 1 → T =

V

g
=

√
m

bg
.
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The resultant equation is given by
ν′ = −1 + ν2,

with
τ =

t√
m
bg

and ν =
v√
mg
b

.

As an added bonus, we will show that by doing whatever we have done, we get for free that these variables are
dimensionless. For instance, from phyical considerations, we know that t has units [time], m has units [mass]
and g has units [meter] × [second]−2. For b, either we know the units or we can deduce the units from the
equation. Since the original equation has −mg added to bv2, for two physical quantities to be added, they must
be of the same units. This implies that units for b = units for m×units for g

units for v2 = [mass][meter]−1. Now, we can check
that

units for τ =
units for t√

units for m
units for b×units for g

=
[second]
[mass]1/2

[mass]1/2[meter]−1/2[meter]1/2[second]−1

= no units.

One can similarly check this for the other constant V .

In summary, we can always:

• Divide an equation through to make one of the constants dimensionless.

• Free to pick any scaling parameters that we use in our substitution to match what we need (or to render
them dimensionless)!

We shall look at an example of this in a bit.
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Hysteresis:
(Increasing the value of the parameter, followed by decreasing it back to its original value, leads to different
trajectories.)
Example: ẋ = rx+x3−x5. The hysteresis is shown in the olive trajectory. As we cross to the origin from the left
(ie r < 0, close to the origin and then increase the parameter by a little), the trajectory jumps up to the stable
branch. Hence, we would have to decrease the parameter by a significant factor (ie till we have r < −1/4), and
then increase the parameter back up to where we start from to return back to the original value, instead of just
decreasing the parameter by the amount that we have increased by.

x

r
Unstable at (0, 0)Stable Unstable

Unstable

Unstable

Stable

Stable

half-stable at (− 1
4 ,

1√
2
)

half-stable at (− 1
4 ,−

1√
2
)
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Imperfect Bifurcation.
We consider another general form of an autonomous first-order system for x(t) with two independent parame-
ters r, h as given below:

ẋ = f(x, r, h).

In previous examples, we have always labeled r as a parameter. Sometimes, one can distinguish h here by
giving h a name, namely the imperfection parameter.

If we are given a fixed r or h, we can treat the other parameter as the bifurcation parameter, and sketch a bifur-
cation diagram as per usual. However, if we attempt to vary both parameters together, it is more informative to
sketch the stability diagram, a diagram for h against r (or the other way round). In this diagram, we should
observe that

• To sketch such a diagram, we first compute the equation of the fixed points as a function of both r and h.
Then, we observe the “curves” of r and h such that we observe a change in the number of fixed points.
(This is similar to what we would usually do for a bifurcation diagram, instead for two variables!)

• Crossing the curves usually corresponds to changing the number of fixed points corresponding to the type
of bifurcation (ie transcritical does not change the number of fixed points, except at the critical value in
which both fixed points combine into a half-stable point, etc).

• Such a diagram should be labeled with the number of fixed points in each of the regions separated by the
curves.

We shall look at an example below.
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Example 19. (Strogatz Exercise 3.5.7, Modified). Consider the logistic equation modelling the popula-
tion N(t) as follows: {

Ṅ(t) = rN
(
1− N

K

)
,

N(0) = N0.

Show that the system can be re-written in the dimensionless form:{
dx
dτ = x(1− x),

x(0) = x0.

for appropriate choices of the dimensionless variable x, x0 and τ .

Suggested Solutions:

Set x = N
M , and τ = t

T for some M and T to be determined and that each of the x and τ are dimensionless.
Recall that

d

dt
=

dτ

dt

d

dτ
=

1

T

d

dτ
.

Substitute these into the equation, we have:{
M
T

dx
dτ = rMx(1− M

K x)

x(0) = N0

M .

which simplifies to: {
dx
dτ = rTx(1− M

K x)

x(0) = N0

M .
.

To match the required equations, we set rT = 1 and M
K = 1, ie

T =
1

r
and K = M

and thus
τ = rt and x =

N

K
.

The system thus reduces to {
dx
dτ = x(1− x)

x(0) = x0,

with
x0 =

N0

M
=

N0

K
.
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Example 20. (Strogatz 3.6.3 Modified, A perturbation to the supercritical pitchfork.)
Consider the system

ẋ = rx+ ax2 − x3

where a ∈ R. When a = 0, we have the normal form for the supercritical pitchfork. The goal of this
exercise is to study the effects of the new parameter a.

(i) For each a, there is a bifurcation diagram of x∗ against r. As a varies, these bifurcation diagrams
can undergo qualitative changes. Sketch all the qualitatively different bifurcation diagrams that
can be obtained by varying a.

(ii) Sketch the corresponding stability diagram in the (r, a) plane.

Suggested Solutions:

Step 1: Identify all fixed points (as a function of r and a). We start off by solving f = 0. This implies that

rx+ ax2 − x3 = x(r + ax− x2) = 0.

This yields

x = 0 or x =
1

2

(
a±

√
a2 + 4r

)
.

The roots obtained from the second solution can be analyzed as follows:

• No roots if r < −a2

4 ,

• Repeated roots if r = −a2

4 , and

• Two roots if r > −a2

4 .

(This should remind you of a saddle-node bifurcation, but now this is along the curve r = −a2

4 .)

Step 2: Flag possible bifurcation curves by analyzing the change in the number of fixed points.

We have already pointed out that r = −a2

4 is one such curve. Next, we observe if the roots could ever overlap.
This involves solving

0 =
1

2

(
a±

√
a2 + 4r

)
.

Moving a to the other side and squaring, we see that

a2 = a2 + 4r

or just
r = 0.

This implies that along r = 0 (for any a, recall that these are “curves”, not points), we might have roots over-
lapping, which might correspond to a potential bifurcation curve.

Step 3: Sketch the bifurcation curves on a stability diagram.

Remark: This step comes before sketching any phase portraits for the following reasons:

• It is sometimes not clear if we should be allowing r to vary first, and sketch bifurcation diagrams for x∗−a,
or to allow a to vary first and sketch bifurcation diagrams for x∗ − r.

• It is easier to fill in different regions on the stability diagram on the go as required than to treat r and a
as two arbitrary parameters, in which the algebra will get challenging. In fact, once you have determined
the relevant region, we can substitute actual numbers to simplify our computations.

• In exams, the final product is usually somewhat of the form of obtaining the stability diagram (though
possibly guided). Hence, sketching the curve directly shows that you have made progress on the problem
(even though you have not sketched any phase portraits!)
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Hence, we have

a

r

r = −a2

4

where the colored curves correspond to potential bifurcation curves as determined in the second step.

Step 4: For each fixed a or r, sketch a bifurcation diagram.
As observed from the diagram above and by the prompts given in the problem, we should be sketching bifurca-
tion diagrams for x∗ − r for a given a (that could vary). Furthermore, since a = 0 corresponds to the normal
form of a supercritical pitchfork, it makes sense to look at regions for which a < 0, a = 0, and a > 0. In fact, a
priori from the bifurcation curves above, we expect similar behaviors for a < 0 and a > 0 (since each horizontal
line always cuts the red curve and the blue line, except at a = 0).

For a = 0, we have

x

r
Stable

Stable Unstable

Stable

Stable

This implies
# Fixed Points r < 0 r = 0 r > 0

1 1 3

For a > 0, we have

x

r
half-stableStable Unstable

Stable

Unstable

half-stable

Stable

This implies
# Fixed Points r < −a2/4 r = −a2/4 −a2/4 < r < 0 r = 0 r > 0

1 2 3 2 3

For a < 0, we get
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x

r
half-stable

half-stable
Stable Unstable

Stable

Stable

Unstable

This implies
# Fixed Points r < −a2/4 r = −a2/4 −a2/4 < r < 0 r = 0 r > 0

1 2 3 2 3

Step 5: Combine everything to draw the global stability diagram.

a

r

Saddle-Node; r = −a2

4

Saddle-Node

2 Fixed Points along this line r = 0.

Transcritical

Supercritical Pitchfork, 1 Fixed Point

1 Fixed Point

3 Fixed Points

3 Fixed Points

3 Fixed Point
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6 Discussion 6

Flows on a Circle.

For flows on a circle, we are generally looking at an autonomous first-order system in the form of

θ̇ = f(θ)

where θ ∈ (−π, π].10 In general, we demand that f must be 2π-periodic (i.e f(θ) = f(θ+ 2π) for any θ) for this
to make sense. As this is an autonomous first-order system, we can import various definitions on flows on a line
to this case here.
For flows in a circle, some of the common terminologies include:

• If θ̇ = ω, we say that ω is the (angular) frequency of the system.

• In general, we define the period, T , to be the time taken to complete one loop. Mathematically, the
“formula” is given by:

T =

∫ 2π

0

dt

dθ
dθ =

∫ 2π

0

1

θ̇(θ)
dθ.

Similar to the one-dimensional flows on a line, we can have bifurcation occurring in our system. A bifurcation
analysis for flows on a circle is analogous to that for flows on a line (with the extra precaution that we are only
interested in θ ∈ (−π, π]).

We shall look at more examples this week, including examples of flows on a circle, bifurcation, and evaluating
relevant periods.

10It does not matter if you include −π or not, as the behavior at −π must be identical to that for π since f is 2π-periodic.
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Example 21. Draw a phase portrait for
θ̇ = cos(2θ).

Suggested Solutions:
For this system, we can solve for the fixed points to be θ = ±π

4 ,±
3π
4 by solving θ̇ = 0. We then sketch the graph

of θ̇ against θ on a line.

− 3π
4

stable

−π
4

unstable

π
4

stable

3π
4

unstable

θ̇

Equivalently, in a circle, we have

3π
4

unstable

π
4

stable

− 3π
4

stable

−π
4

unstable
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Example 22. (Strogatz 4.5.3 Modified) Consider the following system:

θ̇ = µ+ sin(θ).

(i) Draw all qualitatively different phase portraits for different values of the control parameter µ.
Classify the bifurcations that occur as µ varies, and find all the bifurcation values of µ.

(ii) For µ > 1, write down the expression representing the period of oscillation for the associated flow.

Suggested Solutions:
(i) Let f(θ, µ) = sin(θ) − (−µ). Graphically, if we view f(θ, µ) = sin(θ) − (−µ), we see that as µ ∈ (−1, 1), we
obtain two roots to the equation f = 0. Indeed, from the graph below, we see that

• For 1 > −µ > 0 (or µ ∈ (−1, 0)), we have the roots to be given by arcsin |µ| and π − arcsin(|µ|).

• For −1 < −µ < 0 (or µ ∈ (0, 1)), we have the roots to be given by − arcsin(|µ|) and −π + arcsin(|µ|).

• At µ = 1 (or −µ = −1), we see that the two roots combine to give a single root at θ = π
2 .

• Similarly, at µ = −1 (or −µ = 1), we see that the two roots combine to give a single root at θ = −π
2 .

Hence, we have that the saddle-node bifurcation occurs at (µ, θ) = (±1,∓π
2 ).

−π π

θ̇

−µ < 0

−µ > 0

stable unstable
unstable stable

The phase portraits are thus given as follows:

µ < −1

µ = −1

π/2

half-stable
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−1 < µ < 0

π − arcsin(|µ|)
stable

arcsin(|µ|)
unstable

µ = 0
−π

stable
0

unstable

0 < µ < 1

−π + arcsin(|µ|)
stable

− arcsin(|µ|)
unstable

µ = 1

−π/2

half-stable

µ > 1

From the phase portraits, we can see that both bifurcation points correspond to the saddle-node bifurcation.

(ii) The period of the oscillation is given by

T =

∫ 2π

0

1

θ̇
dθ =

∫ 2π

0

1

µ+ sin θ
dθ.
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Example 23. In the lectures, we have explored the idea of looking at a square root scaling law for the
time taken for a trajectory to pass through a bottleneck. In general, this was obtained for a saddle-node
bifurcation by computing

Tbottleneck ≈
∫ +∞

−∞

dx

ẋ(x)

where ẋ = r + x2 for r > 0. This formula is valid as for r is small, most of the time is spent near the
bottleneck as |ẋ| is close to 0. Similarly, let us consider

ẋ = cosh(x)− 1 + r.

One can see that for r > 0, the graph of ẋ against x has a minimum value at x = 0, ẋ = r.

(i) Following a similar argument, write down the integral representing the time spent T (r) by a tra-
jectory in a bottleneck for small values of r.

(ii) Compute the integral numerically for r = 0.001 and r = 0.0001 using your favourite numerical
solver (i.e Wolfram etc), and thus compute the ratio

T (0.0001)

T (0.001)
.

(iii) How does your solution in (b) to verify that the square root scaling law works in this case?

(iv) Why should you expect the square root scaling law to work in this case?

Suggested Solutions:
(i)

T (r) ≈
∫ +∞

−∞

dx

cosh(x)− 1 + r
.

(ii) We have
T (0.0001)

T (0.001)
≈ 3.19279.

(iii) Since (
T (0.0001)

T (0.001)

)2

≈ 10.1939 ≈ 10,

we can see that scaling the factor a down by a factor of 10 causes the time taken to scale up by a factor of
≈

√
10.

(iv) Observe that for small x, we have cosh(x) ≈ 1 + x2

2 , and thus we have

ẋ ≈ x2 + r,

corresponding to the normal form of a saddle-node bifurcation.
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7 Discussion 7

Recap for Required Linear Algebra
Properties of 2× 2 matrices.

Let A =

[
a b
c d

]
be an arbitrary matrix and I =

[
1 0
0 1

]
be the identity matrix.

• Trace of the matrix A is defined and denoted by

tr(A) = a+ d.

• Determinant of the matrix A is defined and denoted by

det(A) = ad− bc.

• The eigenvalue(s) of the matrix A, denoted by λ, is/are obtained from solving the characteristic poly-
nomial in λ given by

det(A− λI) = 0.

• We say that a vector v ̸= 0 is an eigenvector of A with an associated eigenvalue λ if

Av = λv.

• We say that two vectors v1 and v2 are linearly independent over C (or R if the eigenvalues are both
real) if the following condition holds: If we have

C1v1 + C2v2 = 0

for some undetermined C1, C2 ∈ C, then we must have C1 = 0 and C2 = 0.

• Distinct eigenvalues correspond to distinct eigenvectors. If A has two distinct eigenvalues λ1 ̸= λ2,
then the corresponding eigenvectors are linearly independent.

We also have the following important theorem that classifies the canonical form of 2× 2 matrices as follows.

Theorem 24. Let A be a 2× 2 matrix. Then we are in one of the three situations:

• A has linearly independent eigenvectors v1 and v2 with corresponding eigenvalues λ1 and λ2. Then,
taking P = [v1,v2], we have

P−1AP =

[
λ1 0
0 λ2

]
.

• A has complex eigenvectors v ± iw with corresponding complex eigenvalues γ ± iω. Then, taking P =
[v,w], we have

P−1AP =

[
γ ω
−ω γ

]
.

Remark: This is of a slightly different form than in the homework (with −ω in the first row, and ω in the
second row); I’ve chosen to preserve this form as this follows from the right choice of basis (ie P ).

• A has one real eigenvector v with repeated eigenvalue σ. We can write down the generalized eigenvector
w as one that solves Aw = σw + v. Then, taking P = [v,w], we have

P−1AP =

[
σ 1
0 σ

]
.

2 × 2 Linear Systems

Consider the 2D system of the form
ẋ = Ax

for 2× 2 matrices. Note that
x = 0
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is a fixed point since ẋ = 0 if x = 0.
To analyze such systems, note that we can transform the system such that the coefficient matrix is in one of the
three canonical forms as described above. Mathematically, this can be done as follows. Let P be the correspond-
ing invertible matrix P from the theorem above such that we have one of the three canonical forms.

Consider the substitution
y = P−1x ⇐⇒ x = Py.

This implies that
ẏ = P−1ẋ

= P−1Ax

= P−1APy.

Since our choice of P is such that P−1AP is one of the three canonical forms, then we are looking at

ẏ = (Canonical Form Matrix)y.

With that, it is sufficient to analyze the system for which the coefficient matrix is in its canonical form. Thus,
without loss of generality, we assume that A is in its canonical form.

Classification of Fixed Points for 2× 2 Linear Systems.

Distinct Eigenvalues - 2 Eigenvectors
We consider a system ẋ = Ax, with A having eigenvalues λ1, λ2 and eigenvectors v1 and v2, where v1 and v2

are distinct in the sense that one is not a scalar multiple of the other.

Solution:
x(t) = C1e

λ1tv1 + C2e
λ2tv2 .

Example: Take v1 =

[
1
1

]
and v2 =

[
1
−1

]
.

Case 1: λ1 < λ2 < 0. For example, take λ1 = −2 and λ2 = −1. The solution is thus given by

x(t) = C1e
−2tv1 + C2e

−tv2.

Observations:

• In both directions, e−t and e−2t goes to 0 as t goes to infinity.

• For t → +∞, we have e−2t ≪ e−t. This implies that the dominant trajectory is along v2 (e−t) for large t
(ie close to 0 since the trajectories go to 0).

• For t → −∞, we have e−2t ≫ e−t. Thus, the trajectories start off being parallel to v1.

• The fixed point (0, 0) is also known as a stable node.

Case 2: λ1 > λ2 > 0. For example, take λ1 = 2 and λ2 = 1. The solution is thus given by

x(t) = C1e
2tv1 + C2e

tv2.

Observations:

• In both directions, et and e2t goes to ∞ as t goes to infinity.

• For t → ∞, we have e2t ≫ et. This implies that the dominant trajectory is along v1 (e2t) for large t (ie the
trajectories will turn to be almost parallel to v1).

• For t → −∞, we have e2t ≪ et. The trajectories thus starts off being parallel to v2 (et).

• The fixed point (0, 0) is also known as an unstable node.
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Case 3: λ1 < 0 < λ2. For example, take λ1 = −1 and λ2 = 1. The solution is thus given by

x(t) = C1e
−tv1 + C2e

tv2.

Observations:

• Along the v1 direction, e−t goes to 0 as t → ∞. We label span{v1} as the stable manifold.

• Along the v2 direction, et goes to +∞ as t → ∞. We label span{v2} as the unstable manifold.

• For t → ∞, the dominant trajectory is along v2. This implies that trajectories turn to be parallel v2. This
trajectory also approaches v2 since the coefficient in front of v1 goes to 0 (that is, e−t goes to 0).

• For t → −∞, the dominant trajectory is v1, and thus starts being parallel to v1.

• The fixed point (0, 0) is also known as an saddle node.

Case 4: λ1 = 0, λ2 ̸= 0 For example, take λ1 = 0 and λ2 = −1. The solution is thus given by

x(t) = C1v1 + C2e
−tv2.

Observations:

• Note that in the v2 direction, the coefficient e−t goes to 0. Thus, all trajectory will lose their component
in v2, and ultimately lie along span{v1} as t → ∞.

• Such a case is also known as a line of fixed points.

Repeated Eigenvalues

Case 5: A is diagonalizable. In other words, we can set σ = λ1 = λ2 in the case of distinct eigenvalues. The
solution is thus given by

x(t) = C1e
σtv1 + C2e

σtv2 = eσt (C1v1 + C2v2) .

Observations:

• Without loss of generality, we assume that σ ̸= 0 (else it reduces to the zero matrix).

• From the factorization above, starting from any point x (in which C1 and C2 are determined), the entire
vector does not change in direction but instead, scales with eσt.

• Thus, if σ > 0, as t → ∞, the trajectories thus goes to ∞ in R2. For t → −∞, this implies that x → 0.

• For σ < 0, we just have to reverse the direction of the trajectories.

• We say that (0, 0) is an unstable star node for σ > 0 and a stable star node for σ < 0.

Case 6: A is in its Jordan Block. Suppose we have the Jordan block for A =

[
σ 1
0 σ

]
, and let σ be the eigenvalue,

v be the eigenvector, and w be the generalized eigenvector that solves (A− σI)w = v.
Solution:

x(t) = (C1 + C2t)e
σtv + C2e

σtw

Example: Take w =

[
1
−1

]
, and v =

[
1
1

]
.

Observations:

• Let C2 > 0, σ > 0. For t → ∞, we have teσt being the most dominant term. This implies that the trajectory
will turn and be parallel to v.

• For t → −∞, the dominant terms remains to be teσt (since |teσt| ≫ |eσt| for t → −∞). With the additional
negative sign from t, this implies that the trajectory starts off in the −v direction from the origin.

• Let C2 < 0, σ > 0. Using a similar argument, we see that the trajectory instead starts off in the +v
direction and ends off to be parallel to the −v direction as it goes to infinity.
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• For t → −∞, the dominant terms remains to be teσt (since |teσt| ≫ |eσt| for t → −∞). With the additional
negative sign from t, this implies that the trajectory starts off in the −v direction if C2 > 0.

• Note that since A is given, we can compute ẋ = Ax at a given point. Combining with the fact that
trajectories go from −v to v, we can pick the right direction (ie if it is clockwise or counterclockwise) in
which the spiral should go.

• For σ < 0, we just have to reverse the direction of the trajectories.

• We say that (0, 0) is an unstable degenerate node for σ > 0 and a stable degenerate node for σ < 0.

Case 7: A is in its Jordan Block and σ = 0.

Using the general solution and taking w =

[
1
−1

]
and v =

[
1
1

]
, we have

x(t) = (C1 + C2t)v + C2w .

One key piece of detail is that both C2 appear in the coefficient of v and that of w.
It suffices to consider the following three cases:

• Suppose x(0) = v +w. Then, we have from the general solution that this is given by C1v + C2w, which
implies that C1 = C2 = 1 necessarily. The general solution is given by x(t) = (1 + t)v +w. As t → ∞, we
have x → ∞v +w, ie with one component of w and infinitely many components of v (going to infinity).
Similarly, as t → −∞, we have x(0) = −∞v +w. From t → −∞, to 0 to ∞, we have

−∞v −w → −w → ∞v −w.

• Suppose x(0) = v. Then, we have from the general solution that this is given by C1v+C2w, which implies
that C1 = 1, C2 = 0 necessarily. The general solution is given by x(t) = v. (Note that C2 is coupled in
both components of v and w). Hence, the solution stays where it starts from for all time. This would be
equivalent to the line of fixed points as in Case 4.

• Suppose x(0) = v −w. Then, we have from the general solution that this is given by C1v + C2w, which
implies that C1 = 1, C2 = −1 necessarily. The general solution is given by x(t) = (1 − t)v − w. From
t → −∞, to 0 to ∞, we have

∞v −w → −w → −∞v −w.

Complex Eigenvalues.

Suppose we have the real canonical form of A =

[
γ ω
−ω γ

]
, for some γ, ω ∈ R. Let the (real) eigenvectors be

given by v ± iw, with eigenvalues γ ± iω.
Solution:

x(t) = Aeγt sin(ωt+B)v +Aeγt cos(ωt+B)w .

Example: Take w =

[
1
−1

]
, and v =

[
1
1

]
.

Observations:

• Here, eγt determines if the trajectories tend to 0 or go to ∞.

• Case 8: γ ̸= 0. (Implicitly, we are also assuming that ω ̸= 0. This is because if that is not the case, this
reduces to Case 5.) If γ > 0, the former happens, while if γ < 0, the latter happens (with trajectories
reversed).
We say that 0 is an unstable spiral if α > 0 and a stable spiral if α < 0.

• Case 9: γ = 0. (Implicitly, we are assuming ω ̸= 0.) If γ = 0, we have that the exponential scaling factor
eγt disappears. Thus, trajectories go in circles with a constant radius from the fixed point. In this case, we
call 0 a (linear) center.

• Without loss of generality, we set B = 0. Then, from the general solution

x(t) = A sin(ωt)v +B cos(ωt)w,
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we see that the trajectory goes
w → v → −w → −v → w

in one period. In other words, we can view the vector subtended by v and w as the semi-major/minor
axes of an ellipse.

• To determine the actual direction of rotation, use the fact that ẋ = Ax to compute the direction at one
point to determine the direction of “rotation” along the ellipse.

In summary, the “phase portrait strategies” are paired with each phase portrait for each case below.
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Example 25.

(i) Given the following matrix

A =

[
7 1
−4 3

]
,

find an invertible matrix P such that
P−1AP

is in one of the three canonical forms of 2×2 matrices and write down the corresponding canonical
form.

(ii) Hence or otherwise, plot the phase portrait of the following system. You should also classify the
stability of the fixed point (0, 0) and indicate the eigenvectors in your sketch if the eigenvectors are
real. {

ẋ = 7x+ y,

ẏ = −4x+ 3y.

Suggested Solution:
(i) Eigenvalues are given by solving det(A − λI) = 0. This yields the characteristic polynomial (λ − 5)2 = 0.

This implies that we only have λ = 5 as the only eigenvalue. Looking at the matrix for A − 5I =

[
2 1
−4 −2

]
.

This implies that there is only one eigenvector given by

v =

[
1
−2

]
.

Next, we would like to be searching for the generalized eigenvector, that is, w that lies in ker((A− 5I)2) but not
ker(A− 5I). This is done by solving11

(A− 5I)w = v,

or equivalently, [
2 1
−4 −2

]
w =

[
1
−2

]
.

This can be done via simple row-reduction techniques, reducing the augmented matrix to its row-reduced form:[
2 1 1
−4 −2 −2

]
→
[
1 1

2
1
2

0 0 0

]
.

This implies that if w =

[
w1

w2

]
, then we have

w1 +
1

2
w2 =

1

2
.

As long as the above equation is satisfied, we are done. One can observe that w =

[
0
1

]
does the job. This implies

that we can pick

P =
[
v|w

]
=

[
1 0
−2 1

]
and obtain12

P−1AP =

[
5 1
0 5

]
.

11Since this implies (A − 5I)2w = (A − 5I)v = 0, where the second equality comes from the fact that we have solved for v from the
equation (A− 5I)v = 0.

12This is because now, we have (A− 5λI)w = v, in which Aw = v + 5w, giving the column
[
1
5

]
.
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Example 26. In this example, you will attempt to derive a general form of some arbitrary system ẋ = Ax,
where A is not yet in its canonical form.

(i) Consider the system ẏ = By, where B =

[
λ 0
0 µ

]
for λ ̸= µ ̸= 0. Derive the general solution for

y(t).

(ii) Suppose that A has two distinct non-zero eigenvalues given by λ and µ, with the associated eigen-
vectors v and w. Derive the general solution to ẋ = Ax for x(t).

Suggested Solution:

(i) Let y =

[
y1(t)
y2(t)

]
. By comparing the first and second components, we have

ẏ1(t) = λy1(t), ẏ2(t) = µy2(t).

Solving each case by separation of variables, we have

y1(t) = y1(0)e
λt, y2(t) = y2(0)e

µt.

By treating y1(0) and y2(0) as arbitrary constants (depending on the initial data), we can write the above
solution as

y(t) =

[
eλt 0
0 eµt

] [
c1
c2

]
.

(ii) If A is not in its canonical form, let P = [v w] (which is invertible by Theorem 24). Perform the substitu-
tion

x = Py ⇐⇒ y = P−1x.

This implies that
P ẏ = APy

and hence

ẏ = P−1APy =

[
λ 0
0 µ

]
y.

Using our answer in (i), we have

y(t) =

[
eλt 0
0 eµt

] [
c1
c2

]
.

Plugging our substitution back in, we have

P−1x(t) =

[
eλt 0
0 eµt

] [
c1
c2

]
and hence

x(t) = P

[
eλt 0
0 eµt

] [
c1
c2

]
=
[
v w

] [eλt 0
0 eµt

] [
c1
c2

]
for some arbitrary constants c1 and c2.
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8 Discussion 8

2× 2 nonlinear systems.

Consider the 2D system
ẋ = f(x)

with x ∈ R2. Writing them out as vectors, we have[
ẋ1

ẋ2

]
=

[
f1(x1, x2)
f2(x1, x2)

]
.

We say that x∗ ∈ R2 is a fixed point of the system if f(x∗) = 0.

We can also obtain a corresponding linearized system about the fixed point by considering the multivariate
Taylor’s theorem as follows. Set x(t) = x∗ + η(t). This implies that ẋ(t) = η̇(t). Furthermore, we can expand
f(x) about x∗ to obtain:

η̇(t) = ẋ(t) = f(x(t)) = f(x∗) + (∇f)(x∗)(η(t)) +O(|η|2).

Since f(x∗) = 0 by definition of a fixed point, we have

η̇(t) ≈ ∇f(x∗) · η(t)

where ∇f(x∗) represents the Jacobian of f evaluated at the point x∗ with the formula given by

∇f(x∗) =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
(x∗).

Note that ∇f(x∗) is a matrix with constant entries. Thus, it makes sense for us to view systems in the form of

η̇ = ∇f(x∗)η

with the relevant linearized dynamical system centered at the fixed point x = x∗. In fact, the following theorem
allows us to “transfer” the behavior of most behavior of linearized systems to the nonlinear system.

Theorem 27. (Hartman-Grobman Theorem) Let f be smooth and x∗ be a hyperbolic fixed point of

ẋ = f(x).

Then, there is a continuously differentiable change of variable from a neighborhood of the fixed point
x∗ to a neighborhood of the fixed point η∗ = 0 with the linearized flow:

η̇ = ∇f(x∗)η.

In summary, the above theorem says that

• If the real part of all the eigenvalues of ∇f(x∗) are non-zero, then the phase portrait for such a fixed
point (called a hyperbolic fixed point) can be used to sketch the phase portrait for the original nonlinear
system close to the fixed point x = x∗.

• Excluded cases:

– Linearized Center (ie eigenvalues are 0± iω).

– Distinct eigenvalues with at least one of them attaining zero. (ie eigenvalue λ > µ, and one of them
is zero).

– Repeated eigenvalues with the zero eigenvalues repeated. (σ = 0 or λ = µ = 0).

To analyze the dynamics for these excluded cases, we have to resort to alternative techniques, ie analyzing the
system in polar coordination, finding invariant, using nullclines, etc.
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Nullclines and Phase Portraits for 2 × 2 nonlinear systems

Consider the system {
ẋ = f1(x, y),

ẏ = f2(x, y).

• If we set ẋ = f1(x, y) = 0, we (might) obtain some function g such that y = g(x).

• Along such a curve, we know that ẋ = 0.

• Thus, all vector fields will only point in the vertical (y−) direction.

• We call the function y = g(x) the x−nullcline (as the function does not (null) “climb” in the x direction).

• Similarly, if we set ẏ = f2(x, y) = 0, along the curve in which f2(x, y) = 0, the vector field will only point
in the horizontal (x−) direction.

• The corresponding direction of the vector field along the nullclines can be determined by looking at the
corresponding equation. For instance, for x−nullclines, since ẋ = 0, the vector fields point in the y
direction. This direction can thus be determined from the sign of ẏ from its corresponding equation.

• The curve given by f2(x, y) = 0 is known as the y−nullcline.

The above concept becomes clearer if we look at a specific example in a bit.

Combining all of the above, given a nonlinear system{
ẋ = f1(x, y),

ẏ = f2(x, y),

here are the following steps that one should do if asked to sketch the phase portrait of it.

1. Find the fixed points of the system; ie solve f1(x
∗, y∗) = 0 and f2(x

∗, y∗) = 0.

2. Find the linearized system at each fixed point by computing the Jacobian ∇f at each of the fixed points
(x∗, y∗). Recall that

∇f(x∗, y∗) =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
(x∗, y∗).

3. Find the corresponding eigenvalues and eigenvectors of the Jacobian ∇f(x∗, y∗).

Now, we can start sketching the phase portrait as follows:

4. Start by plotting each of the fixed points on the xy plane. For each of the hyperbolic fixed points, sketch
the phase portrait around the fixed points as if it was the linear system η̇ = ∇f(x∗, y∗)η with the matrix
A = ∇f(x∗, y∗) (and using the eigenvalues and eigenvectors etc).

5. For each non-hyperbolic fixed point, this should be guided from parts of the question. Such analysis
includes looking in polar coordinates, looking for invariants, etc.

6. Last but not least, sketch the x− and y− nullclines and indicate the direction of vector fields along each
of these nullclines. If the nullclines have a complicated functional form, it might be fine to not include it
in the final sketch of the phase portrait. (Grading for this portion is highly dependent on the grader and
the explicit requirement(s) of a given question.)

7. All in all, try to complete the phase portrait by joining up whatever curves/vector fields that make sense.

We shall look at a full example.
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Example 28. Consider the following system of ODEs:{
ẋ = y − 2,

ẏ = 1− x.

(i) Find all x− and y− nullcline(s) to the above system.

(ii) Using only your answer in (i), deduce that (1, 2) is the only fixed point to the above system.

(iii) By only using your answer in (i) (ie without finding eigenvectors and eigenvalues of the corre-
sponding matrix A), sketch a phase portrait for the above system as if (1, 2) is a linear center.

Suggested Solutions:

(i) The x-nullclines are given by ẋ = 0. In other words, we have

y − 2 = 0

and hence
y = 2.

Similarly, the y-nullclines are given by ẏ = 0. In other words, we have

1− x = 0

and hence
x = 1.

(ii) A fixed point must lie on both the x− and y− nullclines. Hence, the intersection of the line x = 1 with
y = 2 is the point (1, 2), which must correspond to the only fixed point in the above system.

(iii) See diagram on the next page.
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Example 29. Consider the following system of ODEs:{
ẋ = x− y,

ẏ = x2 − 4.

(i) Find all fixed points.

(ii) Find the linearization of each fixed point(s).

(iii) Compute the eigenvalues of the Jacobian at each fixed point(s) and use these to classify any hy-
perbolic fixed point(s).

(iv) For every hyperbolic fixed point(s) with no imaginary parts, find an eigenvector for each eigenvalue
found in (iii).

(v) Find all x− and y− nullcline(s) to the above system.

(vi) Sketch a phase portrait for the above system. Your phase portrait should demonstrate the informa-
tion you have computed in parts (i) to (v).

Suggested Solutions:

(i) The fixed points are obtained by solving the following system:{
x− y = 0

x2 − 4 = 0

This yields x = ±2, y = ±2; ie the two fixed points are (−2,−2) and (2, 2).

(ii) Since f(x, y) =

[
f1(x, y)
f2(x, y)

]
=

[
x− y
x2 − 4

]
, we have

∇f(x, y) =

[
1 −1
2x 0

]
.

This implies that

∇f(−2,−2) =

[
1 −1
−4 0

]
, ∇f(2, 2) =

[
1 −1
4 0

]
.

In other words, we have (for η(t) = x(t)− x∗ with appropriate fixed points as from (i)), the linearization
at (−2,−2) is given by

η̇ =

[
1 −1
−4 0

]
η.

Similarly, the linearization at (2, 2) is given by

η̇ =

[
1 −1
4 0

]
η.

(iii) At (−2,−2), the eigenvalues are given by 1
2 (1±

√
17), where 1

2 (1 +
√
17) > 0 and 1

2 (1−
√
17) < 0. Hence,

(−2,−2) is a hyperbolic fixed point that corresponds to a saddle-node.

At (2, 2), the eigenvalues are given by 1
2 (1 ±

√
17), where 1

2 (1 ± i
√
15). The real part of each of these

eigenvalues is 1
2 > 0. Hence, (2, 2) is a hyperbolic fixed point that corresponds to an unstable spiral.

(iv) By the requirement of the question, it suffices to find the corresponding eigenvectors at (−2,−2). For

λ = 1
2 (1 +

√
17), the corresponding eigenvector is given by

[
−1−

√
17

8

]
. Similarly, for λ = 1

2 (1 −
√
17),

the corresponding eigenvector is given by
[
−1 +

√
17

8

]
.

(v) The x−nullclines are obtained by solving ẋ = 0. This corresponds to the line x = y.
The y−nullclines are obtained by solving ẏ = 0. This corresponds to the lines x = 2 and x = −2.

(vi) See diagram on the next page.
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Lyapunov Stability.
Some Definitions:

• The open ball of radius r > 0 about x∗ is defined as

B(x∗, r) = {x ∈ R2 : ||x− x∗|| < r}.

• We say that x∗ is attracting if there exists r > 0 so that given any x(0) ∈ B(x∗, r), we have

x(t) → x∗

as t → ∞.
(Intuitively, we say that the point is attracting if we can find “a region” containing x∗ such that if we start
from any point in the region, then we have x → x∗.)

• We say that x∗ is globally attracting if we can replace B(x∗, r) by R2.
(Intuitively, this means that starting from any point in R2, it will eventually tend to x∗.)

• We say that x∗ is Lyapunov stable if for any given ε > 0, there exists r > 0 so that for every x(0) ∈ B(x∗, r),
we have

x(t) ∈ B(x∗, ε)

for all t ≥ 0.
(Intuitively, if we pick any starting point in some region containing x∗, the trajectories will be bounded in
some other region containing x∗.)

• A fixed point that is Lyapunov stable but not attracting is neutrally stable.

• A fixed point that is Lyapunov stable and attracting is asymptotically stable.

• A fixed point that is neither attracting nor Lyapunov stable is unstable.

The classification of the fixed point (0, 0) corresponding to all three real canonical forms is the content of Home-
work 7 Problem 1. Thus, instead of providing the solution to this problem, I shall classify the Lyapunov stability
of some of the common types of fixed points.

Types of Fixed Point Lyapunov Stability Attracting Stability
Stable Node ✓ ✓ Asymptotically Stable

Unstable Node × × Unstable
Saddle Node × × Unstable

Stable Degenerate Node ✓ ✓ Asymptotically Stable
Unstable Degenerate Node × × Unstable

Center ✓ × Neutrally Stable
Stable Spiral ✓ ✓ Asymptotically Stable

Unstable Spiral × × Unstable
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9 Discussion 9

Potential and Hamiltonian Flows.

A gradient flow/system is a system that can be expressed as

ẋ = −∇V (x),

where V : R2 → R. We sometimes call V the potential/potential energy function of the gradient flow.
(Compare this with the one-dimensional case, where we have ẋ = −dV

dx .)

Explicitly, we have

x =

[
x
y

]
,

{
ẋ = −∂V

∂x

ẏ = −∂V
∂y .

A Hamiltonian flow/system is a system that can be expressed as

ẋ =

[
0 1
−1 0

]
∇H.

Explicitly, {
ẋ = ∂H

∂y

ẏ = −∂H
∂x

for some smooth function H (known as the Hamiltonian of the system).
Due to physical reasons, we often replace y by p to represent momentum (as a proxy for velocity, given by ẋ).

The following table summarizes the difference between these flows.

Properties Potential Flow Hamiltonian Flow

Governing Equations

{
ẋ = −∂V

∂x = f1

ẏ = −∂V
∂y = f2

{
ẋ = ∂H

∂y = f1

ẏ = −∂H
∂x = f2

Is of such form if ∂f1
∂y = ∂f2

∂x ∇ · f = ∂f1
∂x + ∂f2

∂y = 0

Obtain V or H by solving

{
∂V
∂x = −f1
∂V
∂y = −f2

{
∂H
∂y = f1
∂H
∂x = −f2

d
dt for all t d

dtV (x(t), y(t)) < 0; d
dtH(x(t), y(t)) = 0

Equality at fixed point (x∗, y∗)
Critical points of V or H are Fixed points Fixed points

Isolated local minima are (Locally) Asymptotically Stable (Locally) Nonlinear centers
Isolated local maxima are (Locally) Unstable (Locally) Nonlinear centers
Isolated local saddles are (Locally) Saddle nodes (Locally) Saddle nodes

Level curves of V or H are Orthogonal to direction of flow Parallel/Along the direction of flow
V or H are examples of Lyapunov Functions Conserved Quantities

Note that at critical points (ie fixed points) of V or H (which we denote by G for convenience), to determine
whether it is a local minima/maxima/saddle, we look at the Hessian, given by

∇2G(x, y) =

[
∂2G
∂x2

∂2G
∂x∂y

∂2G
∂x∂y

∂2G
∂y2

]
(x, y).

Let λ1 ≤ λ2 be the eigenvalues of ∇2G(x∗, y∗) (ie evaluated at the critical points).

• If λ2 ≥ λ1 > 0, then (x∗, y∗) is a local minimum.

• If λ1 ≤ λ2 < 0, then (x∗, y∗) is a local maximum.

• If λ1 < 0 < λ2, then (x∗, y∗) is a (local) saddle point.
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A related concept is to consider the time taken by a trajectory in a Hamiltonian system. Suppose that we are
looking at the time taken T to go from x = a to x = b. This is then given by

T =

∫ b

a

dt(x) =

∫ b

a

dt

dx
dx =

∫ b

a

1

ẋ
dx =

∫ b

a

1

p
dx.

Using the fact that a trajectory remains on level curves of the Hamiltonian, we can determine p as a function of
x and perform the relevant integration as required.
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Lyapunov Functions and Conserved Quantities

We say that the system ẋ = f(x) is conservative if there exists a continuous function E : R2 → R (known as a
conserved quantity) such that:

• The function E is not constant on any open ball B(x0, δ), and

• E(x(t)) is constant on each trajectory. Mathematically, if E is continuously differentiable (on top of being
continuous), we have d

dtE(x(t)) = 0 for all time t.

If we can find such a conserved quantity E, we then have that if the isolated fixed point x∗ corresponds to a
critical point for E, we thus have that

• The system cannot have an attracting fixed point, and

• If x∗ is a local minimum or maximum for E, it then corresponds to a nonlinear center for the system.

Example: A Hamiltonian system is a conserved system, with the Hamiltonian as the conserved quantity. This
was proven in the previous concept on Hamiltonian flow that d

dtH(x(t)) = 0 for all time t.

We say that the system ẋ = f(x) has a Lyapunov function F (t) if there exists a continuously differentiable
function F : R2 → R and a δ > 0 such that for all x ∈ B(x0, δ), we have:

• F (x) ≥ 0 with equality if and only if x = x∗, and

• ∇F · f(x) < 0 for all x ̸= x∗. Mathematically, this is equivalent to

d

dt
F (x(t)) = ∇F · ẋ = ∇F · f(x) < 0

for all x ̸= x∗.

Then, we have the following properties for the system:

• If x∗ is an isolated fixed point, then it is asymptotically stable at that point.

• There are no closed orbits in the neighborhood of x∗.

Example: A potential system is one with a Lyapunov function. The choice of Lyapunov function here would be
the potential V plus a constant C large/small enough such that V ≥ 0 for all x and equality holds when x = x∗

(basically, the first condition). Thus, recalling that ẋ = f(x) = −∇V for a potential flow, we compute

d

dt
V (x(t)) = ∇V · f(x) = −|∇V |2 < 0

for all x ̸= x∗. This implies that the second condition for a Lyapunov function holds.

Hence, this is consistent with the fact that all potential flows with an isolated fixed point will correspond to
an asymptotically stable fixed point. Furthermore, from the second conclusion drawn from the existence of a
Lyapunov function, we know that there are no closed orbits in the neighborhood of x∗ for a potential flow. In
fact, such a statement is true globally (ie there are no closed orbits for a potential flow) if d

dtV (x(t)) < 0 is true
globally except at the fixed point x∗.

There is no general strategy that one can use to employ Lyapunov functions/conserved quantities except by
guessing/practice. We shall look at an example of such below.
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Example 30. Consider the system {
ẋ = −2x+ εx2

ẏ = −2y
(8)

for some fixed constant ε ≥ 0.

(i) Show that the above system is a potential flow.

(ii) Determine a function V (x, y) corresponding to the potential of the gradient flow.

(iii) By computing ∇2V (x, y), determine the stability of the fixed point (0, 0).

(iv) By sketching level curves of the potential function, sketch a phase portrait for the system above
when ε = 0.

(i) Since f1 = −2x+ εx2 and f2 = −2y, we observe that

∂f1
∂y

= 0 =
∂f2
∂x

.

Hence, the above system is a potential flow.

(ii) To determine a corresponding potential function, we attempt to solve the following system{
∂V
∂x = 2x− εx2

∂V
∂y = 2y.

Integrating the first equation, we have

V (x, y) = x2 − ε

3
x3 + f(y)

for some arbitrary function f depending only on y. Similarly, by integrating the second equation, we have

V (x, y) = y2 + g(x)

for some arbitrary function g depending only on x. By comparing the two different functional forms of V ,
we then deduce that

V (x, y) = x2 − ε

3
x3 + y2 + C.

(That is, f(y) = y2 +C and g(x) = x2 − ε
3x

3 +C necessarily.) Here, C is an arbitrary constant that we are
free to choose, and for most cases, it suffices to pick C = 0.

(iii) One can easily check that (0, 0) is a fixed point. Hence, we compute ∇2V (x, y), and obtain

∇2V (x, y) =

[
2− 2εx 0

0 2

]
.

This implies that

∇2V (0, 0) =

[
2 0
0 2

]
.

The eigenvalues are both positive (ie 2, since this is a diagonal matrix so the diagonal entries are the
eigenvalues). This implies that (0, 0) is an stable fixed point (see the table above in the first page of this
supplement). Here, we remark that the above analysis is equivalent to the linearization approach that we
did in the last two weeks.

(iv) When ε = 0, we have that V (x, y) = x2 + y2. We will attempt to sketch the curves for V = 1 (that is
x2 + y2 = 1, a circle centered at the origin with radius 1), V = 2, etc. Using the fact that

• d
dtV ≤ 0 for all t with equality holds only at the fixed point, and

• Flows in a potential system are orthogonal to the level curves,



Spring 23 MATH134 Discussion Supplements 75

we must sketch solution curves to the orthogonal to level curves in the direction of decreasing V . Synthe-
sizing the above information, we thus have

x

y

V = 1

V = 2

V = 3
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Example 31. Consider the following second-order differential equation
ẍ+ x = 0,

x(0) = 0,

ẋ(0) = 1.

(i) Set p = ẋ. Convert the above differential equation into a linear system with x(t) =

[
x(t)
p(t)

]
.

(ii) Show that the system in (i) is Hamiltonian and compute a corresponding Hamiltonian.

(iii) Compute the time T in which x(t) first equal 1.

(iv) By sketching level curves of the Hamiltonian, sketch a phase portrait for the system in (i).

Suggested Solution:

(i) The corresponding system is given by {
ẋ = p

ṗ = −x.

(ii) Observe that with f1 = p and f2 = −x, we have

∂f1
∂x

+
∂f2
∂p

= 0

and hence the system is Hamiltonian. To determine a corresponding Hamiltonian, we attempt to solve{
∂H
∂p = p
∂H
∂x = x.

Integrating the first equation, we have

H(x, p) =
p2

2
+ f(x).

where f is some arbitrary function depending only on x. Similarly, integrating the second equation yields

H(x, p) =
x2

2
+ g(p).

By comparing the two different functional forms of H, we then deduce that

H(x, p) =
x2

2
+

p2

2
.

(That is, f(x) = x2

2 and g(p) = p2

2 necessarily.)

(iii) As the system starts out from H = 1
2x(0)

2 + 1
2 (ẋ(0))

2 = 1
2 , we must have that this value stays constant

throughout this (unique) trajectory. Thus, along the trajectory from x = 0 to x = 1, we have

H =
1

2
=

1

2
x2 +

1

2
p2.

Thus,
p =

√
1− x2.

Here, we have picked the positive square root as x is increasing till ẋ = 0 and ẋ must be non-negative till
x = 1 when p = ẋ first attains 0. Thus, from the formula above, we have

T =

∫ 1

0

1

ẋ
dx =

∫ 1

0

1

p
dx =

∫ 1

0

1√
1− x2

dx =
π

2
.
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(iv) You would just have to consider sketching different level curves (energy surfaces) for a given fixed value
of H. Here, if H = 1

2 , then we have x2 + y2 = 1 corresponding to a circle of radius 1. Similarly, for H = 1,
we have x2 + y2 = 2, corresponding to a circle of radius

√
2. From the above points, we know that the

trajectories must lie on level curves (as the value of H does not change with time). Thus, the trajectories
must be these circles centered at the origin with a radius corresponding to a given choice of H.

As we have already figured out the level curves for any given value of H. Writing down the system in
such a form will only aid us to determine the direction of the flow along these circles. In fact, for H = 1,
we consider the point (x, p) = (

√
2, 0) on the circle and note that (ẋ, ṗ)|(√2,0) = (0,−

√
2). This implies

that the arrow must point in the negative p direction. A similar calculation for arbitrary H reveals that
the trajectories must go in circles, in the clockwise direction. Synthesizing the above information, we then
have:

x

p

H = 1

H = 2

H = 3
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Example 32. For the following system: {
ẋ = −x

ẏ = −y3,

find a Lyapunov function for the fixed point (0, 0) of the system.

Suggested Solutions:

Consider the function
F (x, y) = x2 + y2.

Indeed, we have that F ≥ 0 with equality if and only if (x, y) = (0, 0). Furthermore, one can check that

d

dt
F = 2xẋ+ 2yẏ = −2x2 − 2y4 < 0

for all (x, y) ̸= (0, 0). Thus, this is a Lyapunov function for the fixed point (0, 0), implying that the fixed point
must be asymptotically stable.
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Example 33. Consider the following autonomous differential equation system:{
ẋ = −x+ y2

ẏ = y − x2.

Identify the fixed points of this equation, and show (either by linearizing the equation or by some other
method) whether they are stable or not.

Suggested Solutions:

We first obtain the fixed points by solving f1 = −x+ y2 = 0 and f2 = y − x2 = 0. The second equation yields

y = x2

and substituting this to the first yields

−x+ (x2)2 = x(x3 − 1) = 0.

We thus have two roots, x = 0 ad x = 1. Using y = x2, we have y = 0 and y = 1 respectively. This implies that
we have two fixed points, (0, 0) and (1, 1).

Note that

∇f =

[
−1 2y
−2x 1

]
.

Thus, for (0, 0), we have

∇f(0, 0) =

[
−1 0
0 1

]
with eigenvalues −1 and 1 implying that (0, 0) is a saddle point (since this corresponds to a hyperbolic fixed
point and such an analysis for the nonlinear fixed point is true due to Hartman-Grobman Theorem), which is
thus unstale.

For (1, 1), we have

∇f(1, 1) =

[
−1 2
−2 1

]
.

The eigenvalues are given by ±
√
3i. Now, we claim that this is a Hamiltonian flow. This is done by considering

∇ · f = ∂f1
∂x

+
∂f2
∂y

= −1 + 1 = 0.

To obtain the Hamiltonian, one can consider solving{
∂H
∂y = −x+ y2

∂H
∂x = −y + x2

.

We can apply the usual techniques to solve for H. Here, H is given by

H(x, y) = x3 + y3 − xy.

Next, we would like to show that (1, 1) is a stable point. Consider

∇2H(x, y) =

[
6x −1
−1 6y

]
,

which we then have

∇2H(1, 1) =

[
6 −1
−1 6

]
,

with eigenvalues given by 5 and 7 which are both positive. This implies that the fixed point (1, 1) corresponds
to a local minimum. Hence, we have that the fixed point (1, 1) is actually a nonlinear center, and is thus stable.
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10 Discussion 10

Index Theory.

Definition:

• Let C be a smooth, simple curve oriented counter-clockwise that does not intersect any fixed points of the
system

ẋ = f(x)

where f is continuously differentiable. Explicitly,{
ẋ1 = f1(x(t), y(t))

ẋ2 = f2(x(t), y(t)).

The index of the closed curve C with respect to the vector field f is given by

IC =
1

2π

∮
C

dϕ

where

ϕ = tan−1

(
f1
f2

)
.

• If the curve C is parameterized by r(t) = (x(t), y(t)) with 0 ≤ t < 2π, then we have

Ic =
1

2π

∫ 2π

0

f1∇f2 − f2∇f1
f2
1 + f2

2

· r′(t)dt.

Properties: From the expression obtained above, if C is parameterized, the idea is that a fixed point corresponds
to f1 = f2 = 0 and thus, a singularity in f1∇f2−f2∇f1

f2
1+f2

2
, and hence we would expect that the index of the curve

circling the fixed point would not necessarily be 0. (Define F = f1∇f2−f2∇f1
f2
1+f2

2
; then one can check that for

f2
1 + f2

2 > 0 ie no fixed points in the domain, we have ∇ · F = 0.)

The following properties are thus inspired by such an idea and multi-variable calculus as follows:

• From a given phase portrait, the index can be computed by looking at the number of counter-clockwise
revolutions made by the vector field as we complete one revolution in the counter-clockwise direction
along the curve C.

• If C does not enclose any fixed points, then IC = 0
(Consequence of Green’s Theorem and ∇ · F = 0; the converse does not hold - see Example 36 below.)

• If we reverse all the arrows in the vector fields by changing t → −t, then the index remains unchanged.

• Let C and C ′ be smooth simple closed curves. If C can be continuously deformed into C ′ without passing
through a fixed point of the vector field, then

IC = I ′C .

• If C is a closed orbit (regardless of orientation, ie clockwise/counter-clockwise), then IC = 1.
(Draw a parallel with the Cauchy Integral formula if you have taken Math 132.)

• If C is a closed orbit, there must be at least one fixed point inside the trajectory. (If not, the absence of a
fixed point inside the trajectory implies that IC = 0, contradicting that closed orbits have IC = 1.)

• The index of an isolated fixed point x∗ is the index of any simple, smooth, closed curve C that encloses
only x∗. Thus,

Ix∗ = IC .
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• If a smooth, simple, closed curve C encloses fixed points x∗
1, ...x

∗
n with indices I1, ..., In, then

IC = I1 + ...+ In.

(Draw a parallel with the Residue theorem if you have taken Math 132.)

• Thus, any closed orbit will enclose fixed points whose indices sum to 1.

• Nodes, spirals, degenerate nodes, and centers have an index 1, while saddle points have an index −1.
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Limit Cycles and Periodic Solutions.

Definitions/Properties of Limit Cycles:

• A limit cycle is an isolated closed trajectory.
Example: A center is not a limit cycle as the closed trajectory is not isolated (neighboring vector fields are
also closed).

• Limit cycles can be stable/attracting, unstable or half-stable. Such classifications are usually done in polar
coordinates.

• Gradient flows do not have closed trajectories, and thus, do not have a limit cycle.

• If a system has a Lyapunov function(s) corresponding to the relevant fixed points, then each fixed point is
asymptotically stable. This implies that we do not have closed trajectories, let alone limit cycles.

• A closed orbit is equivalent to a periodic solution (if we allow ourselves to define constant solutions to be
closed orbits).

Theorem 34. (Dulac’s Criterion.) Let f(x) be a continuously differentiable vector field on a simply
connected set R ⊆ R2. (Here, simply connected is with respect to the vector field f , such that we have
no singularities in the region R.) If there exists a continuously differentiable, real-valued function g(x)
so that

∇ · (gf(x))

has a sign throughout R, then there are no closed orbits of the system ẋ = f(x) in R.

Theorem 35. (Poincaré-Bendixson Theorem.) Suppose that

(i) R ⊆ R2 is closed and bounded.

(ii) f(x) is a continuously differentiable vector field on an open set containing R.

(iii) R does not contain any fixed points.

(iv) There exists a trajectory C of ẋ = f(x) confined to R.

Then, R contains a closed orbit.

To apply the Poincaré-Bendixson Theorem, it is usually easy to show that (i) to (iii) holds. To show that (iv)
holds, one will have to appeal to the construction of trapping regions (ie vector field pointing inwards towards
a region that we construct (which is known as a trapping region)).
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Bifurcations in 2D.

The basic idea is that bifurcations in 2D can be analyzed using a similar strategy as for the case in 1D. In other
words, we look at how the number of fixed points (in 2D) changes as the bifurcation parameter µ changes,
which usually involves the change in the number of roots to a quadratic equation (saddle-node), “colliding”
roots (transcritical bifurcation), or pitchfork bifurcation of roots. The only difference is that the stability of
each fixed point as µ changes are analyzed in 2D (with the help of nullclines if needed).

We shall look at an example of this below.
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Example 36. Consider the following system:{
ẋ = y

ẏ = −x(2− x).

(i) Show that (0, 0) is a nonlinear center.

(ii) Sketch the phase portrait of this system.

(iii) Consider a curve C of radius sufficiently small (at most 1) centered at the origin and oriented
counter-clockwise. Use the phase portrait in (ii) to deduce that the value of the index IC = 1.

(iv) Consider a curve C ′ of radius 3 centered at the origin and oriented counter-clockwise. Without
using the phase portrait, compute the index IC′ .

Suggested Solution:

(i) One can check that (0, 0) is a fixed point of the system (along with (2, 0)). Furthermore, it is a Hamiltonian
system, since ∂

∂x (y) +
∂
∂y (−x(2− x)) = 0. One can then solve for the Hamiltonian by solving ∂H

∂y = y and
∂H
∂x = x(2− x) to obtain

H(x, y) =
y2

2
+ x2 − x3

3
.

The Hessian is given by

∇2H(x, y) =

[
1− 2x 0

0 1

]
.

Hence, at (0, 0), we have

∇2H(0, 0) =

[
1 0
0 1

]
and that both eigenvalues are positive, implying that (0, 0) is a local minimum of the Hamiltonian, and
thus corresponds to a nonlinear center.

(ii) For the other fixed point, observe that

∇f =

[
0 1

−2 + 2x 0

]
.

At x = 2, we have

∇f(2, 0) =

[
0 1
2 0

]
has eigenvalues −

√
2,
√
2 with eigenvectors

[
−1√
2

]
and

[
1√
2

]
, and hence corresponds to a saddle point.

Thus, we have
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(iii)

(iv) Note that C ′ encloses both fixed points. By the property of indices, as mentioned above, we have

IC′ = I(0,0) + I(2,0) = 1− 1 = 0,

since we have that for a saddle, the index is −1, and that the index at (0, 0) (which is a center) is 1 as seen
in (iii).
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Example 37. Consider the following ODE

ẍ+ λẋ+ f(x) = 0

where x is twice continuously differentiable and f is smooth, with a constant λ > 0. Show that there are
no periodic solutions other than a stationary fixed point x(t) = c for all t for some constant c.
Hint: Use the weighting function g(x) = 1 for all x.

Suggested Solutions:

Let y = ẋ and consider the following system:{
ẋ = y

ẏ = −λy − f(x).

The fixed points are obtained by solving y = 0 and −λy − f(x) = 0. Since y = 0, we have

f(x) = 0

and thus x∗ are solutions to the equation f(x) = 0. The fixed points are thus given by (x, y) = (x∗, 0).

Note that it is challenging to construct a Lyapunov function. Furthermore, one can check that the system is
not a potential flow. Thus, we have to turn to alternative tools. For this class, the only alternative tool that
we have to rule out closed orbits (periodic solutions) is Dulac’s criterion. By setting g ≡ 1, we compute (using
f = (y,−λy − f(x))⊺):

∇ · (gf) = ∇ · f = ∂

∂x
(y) +

∂

∂y
(−λy − f(x)) = −λ < 0.

Thus, the sign is maintained throughout R2. Furthermore, f is clearly continously differentiable on R2 and R2

is a simply connected set corresponding to f . Furthermore, g(x) = 1 is continuously differentiable. By Dulac’s
criterion, there are no closed orbits for the system. Thus, the only periodic solutions would be the fixed points.
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Example 38. (Strogatz 7.1.5, Modified.) Consider the following system:{
ẋ = x− y − x(x2 + y2),

ẏ = x+ y − y(x2 + y2).

In the usual polar coordinates (r, θ), we have{
ṙ = r(1− r2),

θ̇ = 1.

(i) Sketch the phase portrait for the above system.

(ii) Observe that r = 1 corresponds to a limit cycle. Classify the stability of this limit cycle.

(iii) Use the Poincaré-Bendixson theorem to prove that there exists a periodic solution.

(i)

(ii) It is a stable limit cycle.

(iii) First, we observe that the only fixed point is (0, 0). This is evident from the dynamics in polar coordinates,
where we have fixed points if ṙ = 0 and θ̇ = 0. For θ̇ = 0, this is only possible if r = 0 (else it is well-defined
and is equal to 1). Furthermore, we check that at r = 0, we indeed have ṙ = 0. Hence, r = 0 is the only fixed
point that we have, which thus corresponds to the origin (0, 0).

Next, we construct a trapping region R = {(x, y) ∈ R2 : 1/2 ≤
√
x2 + y2 ≤ 2} (ie an annular region of radius

1/2 and 2). Observe that

ṙ(r = 1/2) =
1

2

(
1−

(
1

2

)2
)

=
3

8
> 0,

and
ṙ(r = 2) = 2

(
1− 22

)
= −6 < 0.

This implies that vector fields point radially outwards along the circle r = 1/2, and radially inwards along the
circle r = 2. This implies that R is a trapping region.
Furthermore, R is a closed and bounded region in R2 that does not contain any fixed points. In addition,

f(x, y) =

[
x− y − x(x2 + y2)
x+ y − y(x2 + y2)

]
is continuously differentiable in R2.

The conditions for Poincaré-Bendixson Theorem are satisfied, and thus R contains a closed orbit (periodic
solution).
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Example 39. Consider the following system:{
ẋ = µ− x2,

ẏ = x− y.

(i) Sketch the nullclines for different values of µ and for sufficiently small |µ|.

(ii) Show that µ = 0 is a bifurcation point and classify the type of bifurcation µ = 0.

(iii) Sketch the phase portrait as a function of µ for sufficiently small |µ|.

We shall attempt (i) and (ii) together as follows. The fixed points are given by solving µ = x2 and x − y = 0.
This implies that x = ±√

µ and thus y = x = ±√
µ. Henceforth, we have

• 2 fixed points if µ > 0, at (−√
µ,−√

µ) and (
√
µ,

√
µ).

• 1 fixed point if µ = 0, at (0, 0), and

• 0 fixed points if µ < 0.

Thus, µ = 0 is a bifurcation point. Thus, we shall sketch nullclines for µ < 0, µ = 0, and µ > 0 as follows:
Furthermore, we can rigorously analyze this by linearization as follows. The Jacobian can be computed to be

∇f(x, y) =

[
−2x 0
1 −1

]
.

For µ = 0, we have

∇f(0, 0) =

[
0 0
1 −1

]
.

The presence of a zero eigenvalue would render the Hartman-Grobman theorem ineffective. For µ > 0, we have

∇f(
√
µ,

√
µ) =

[
−2

√
µ 0

1 −1

]

with eigenvalues −1,−2
√
µ and eigenvectors

[
0
1

]
and

[
1− 2

√
µ

1

]
; and

∇f(−√
µ,−√

µ) =

[
2
√
µ 0

1 −1

]

with eigenvalues −1, 2
√
µ and eigenvectors

[
0
1

]
and

[
1 + 2

√
µ

1

]
. Thus one can observe that the 0 eigenvalue

branches out into a stable (and unstable) branch at (
√
µ,

√
µ) (and (−√

µ,−√
µ)). This implies that the two

fixed points at µ > 0 correspond to one stable and one unstable point. In fact, we can see from the phase por-
traits/nullclines that (0, 0) for µ = 0 is a half-stable point. Hence, we can then conclude that µ = 0 corresponds
to a saddle-node bifurcation.



Spring 23 MATH134 Discussion Supplements 89

(i)
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(iii)
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