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1 Discussion 1

Mathematical Preliminaries for Laplace Transforms.

To begin, we shall not review theoretical concepts from 31AB/33B as you should be familiar with the concepts
of differentiation, integration, and differential equations. Instead, here are some common indefinite integrals
that you should know (and will be used commonly in this class):

•
∫
xadx = x1+a

1+a + C for a ̸= 1,

•
∫

1
xdx = ln |x|+ C,

•
∫
(bx+ c)adx = (bx+c)1+a

b(1+a) + C for a ̸= 1 and b ̸= 0,

•
∫
sin(ax)dx = − cos(ax)

a + C for a ̸= 0,

•
∫
cos(ax)dx = sin(ax)

a + C for a ̸= 0,

•
∫
ekxdx = ekx

k + C for k ̸= 0.

Note that k can be a complex number for the last integral in the list above.

Next, we recall the concept of a change of variable via the use of an example as follows. Observe that∫ b

a

f(x)dx =

∫ x=b

x=a

f(x)dx =

∫ x−a=b−a

x−a=0

f(x− a+ a)d(x− a) =

∫ y=b−a

y=0

f(y + a)dy

=

∫ b−a

0

f(y + a)dy.

Here, we have used the substitution2 y = x− a and perform the change of variables accordingly.

Another related concept is integration by parts. For any functions u(x) and v(x), we have∫
u(x)v′(x)dx = u(x)v(x)−

∫
u′(x)v(x)dx.

This is useful for evaluating integrals of the form
∫
e−pxxndx. For example, by setting u(x) = x and v(x) = e−x

(and hence u′(x) = 1 and v′(x) = −e−x), we have∫ 1

0

xe−xdx =
xe−x

−1
|x=1
x=0 −

∫ 1

0

1 · e−x

−1
dx = −1

e
+

∫ 1

0

e−xdx = −1

e
+
e−x

−1
|x=1
x=0 = −2

e
+ 1.

Moving on, one should be familiar with complex numbers and Euler’s identity. In particular, the latter states
that for any real number θ,

eiθ = sin(θ) + i cos(θ).

It is worth noting that since for a complex number a+ bi, we have |a+ bi| =
√
a2 + b2 = 1, then

|eiθ| =
√
sin2(θ) + cos2(θ) = 1.

The above properties will be useful for evaluating integrals of the form
∫
e−px sin(kx)dx or

∫
e−px cos(kx)dx.

For instance, observe that we can compute
∫ 2

0
cos(x)dx with an alternative method using Euler’s identity as

follows:3 ∫ 2

0

cos(x)dx =

∫ 2

0

Re
(
eix)dx = Re

(∫ 2

0

eixdx

)
= Re

(
eix

i
|x=2
x=0

)
= Re

(
e2i − 1

i

)
= Re

(
cos(2) + i sin(2)− 1

i

)
= Re (sin(2) + i(1− cos(2))) = sin(2).

(1)

2Note that the function y(x) = x− a is a one-to-one function; when applying a suitable substitution, a reason why it might have failed
could be due to the fact that the choice of the substitution (function) is not one-to-one.

3Rigorously speaking, f(x)|x=B
x=A is a short-hand notation for limx→B f(x)− limx→A f(x).
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Here, we use the fact that 1
i = i

i2 = i
−1 = −i.

Last but not least, we recall the concept of an improper integral as follows. We say that the integral
∫∞
0
f(x)dx

converges if the limit

lim
b→∞

∫ b

0

f(x)dx

exists. We then denote ∫ ∞

0

f(x)dx := lim
b→∞

∫ b

0

f(x)dx. (2)

To check if the improper integral converges, it suffices to check if it converges absolutely. We say that the
improper integral

∫∞
0
f(x)dx converges if there is a function g such that |f(x)| ≤ g(x) for all x and∫ ∞

0

g(x)dx

converges. In most cases, if f(x) is a non-negative function, it suffices to compute the improper integral by
computing

∫ b

0
(something) dx and taking the appropriate limits as in (2).

In the following pages, we have some worked examples to help you to consolidate these concepts.
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Example 1. Let p and q be real numbers.

(i) With the help of Euler’s identity, compute
∫∞
0
e−px sin(x)dx.

(ii) Hence, compute
∫∞
2
e−q(x+1) sin(2x− 4)dx.

For what values of p and q do the integrals in (i) and (ii) converge?

Suggested Solution:

(i) ∫ ∞

0

e−px sin(x)dx =

∫ ∞

0

e−px Im
(
eix)dx = Im

(∫ ∞

0

e(i−p)xdx

)
= Im

(
e(i−p)x

(i − p)
|x=∞
x=0

)
= Im

(
1

p− i

)
= Im

(
(p+ i)

(p− i)(p+ i)

)
= Im

(
p+ i
p2 + 1

)
=

1

p2 + 1
.

(3)

In the computations above,

• We have used the fact that (p− i)(p+ i) = p2 − i2 = p2 + 1.

• Since |e(i−p)x| = |eixe−px| = |eix|e−px = e−px → 0 as x→ 0 and p > 0, we demand that p > 0 for the
improper integral to converge.

Note 1: You should not be too concerned with swapping improper integrals and taking the imaginary part
of an integral. In fact, one can show using techniques in Analysis that this is valid as long as the improper
integral converges.

Note 2: Rigorously speaking, we should be evaluating∫ b

0

e−px sin(x)dx = ... =
1− e−pb(cos(b) + p sin(b))

1 + p2
(4)

and taking the limit as b → ∞ to obtain 1
1+p2 . Not only does this show that the improper integral

converges, you can also observe that the term e−pb(cos(b) + p sin(b)) → 0 as b→ ∞ if p > 0. For practical
purposes, the above computation would probably be fine for the purpose of this class.

(ii) By change of variables y = 2x− 4, since x+ 1 = 2x+2
2 = 2x−4

2 + 3, by treating p = q/2 we have∫ ∞

2

e−q(x+1) sin(2x− 4)dx =

∫ x=∞

x=2

e−q(x+1) sin(2x− 4)dx

=

∫ 2x−4=∞

2x−4=0

e−p( 2x−4
2 +3) sin(2x− 4)d

(
2x− 4

2

)
= e−3q

∫ 2x−4=∞

2x−4=0

e−
q
2 (2x−4) sin(2x− 4)d

(
2x− 4

2

)
=
e−3q

2

∫ y=∞

y=0

e−q/2(y) sin(y)dy

=
e−3q

2
· 1

(q/2)2 + 1
=

2e−3q

q2 + 4
.

(5)

Since in (i) we demand p > 0, then it suffices to require q = 2p > 0.



Fall 23 MATH135 Discussion Supplements 5

Example 2. By an appropriate substitution, for n ≥ 1, evaluate∫ ∞

0

xn−1e−xn

dx.

Suggested Solution:

Let y = xn. This implies that at x = 0 we have y = 0 and at x → ∞ we also have y → ∞. Then, we have
dy = nxn−1dx and thus∫ ∞

0

xn−1e−xn

dx =
1

n

∫ ∞

0

e−xn (
nxn−1dx

)
=

1

n

∫ ∞

0

e−ydy =
1

n
.
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Example 3. Let p and q be real numbers.

(i) Compute
∫∞
1
x2e−qxdx.

(ii) Hence, compute
∫∞
2
x2e−pxdx.

For what values of p and q do the integrals in (i) and (ii) converge?

Suggested Solution:

(i) By applying integration by parts twice, we have∫ ∞

1

x2e−qxdx =
x2e−qx

−q
|x=∞
x=1 +

∫ ∞

1

2

q
xe−qxdx

=
e−q

q
+

2

q

(
xe−qx

−q
|x=∞
x=1 +

∫ ∞

1

e−qx

q
dx

)
=
e−q

q
+

2

q

(
e−q

q
+
e−q

q2

)
=

e−q(q2 + 2q + 2)

q3
.

(6)

(ii) By change of variables (y = x/2 and treating q = 2p in (i)), we have∫ ∞

2

x2e−pxdx =

∫ x=∞

x=2

x2e−pxdx =

∫ x/2=∞

x/2=1

(2 · x/2)2 e−2p(x/2)2d(x/2)

= 2

∫ y=∞

y=1

(2y)
2
e−2pydy

= 8

∫ y=∞

y=1

y2e−2pydy

= 8 · e
−2p((2p)2 + 2(2p) + 2)

(2p)3
=

e−2p(4p2 + 4p+ 2)

p3
.

(7)

In (i), we require x2e−qx → 0 as x → ∞ to evaluate x2e−qx

−q |x=∞
x=1 . This implies that we require q > 0 for the

integral to converge (so that the exponential decay goes to 0 faster than a polynomial decay). Since in (ii),
p = q/2, equivalently, we require that p > 0.
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2 Discussion 2

Laplace Transforms.

L [f(x)]︸ ︷︷ ︸
Takes a functionf(x)︸ ︷︷ ︸

Outputs a function in p

(p) =

∫ ∞

0

e−pxf(x)dx︸ ︷︷ ︸
The formula here

= F (p)︸︷︷︸
Usually denote the output function in p as F (p)

(8)

We call L above the Laplace transform, which takes in a function and outputs a function.4 We sometimes refer
to p as the Laplace variable.

Table of Laplace Transforms:

f(x) F (p) = L[f(x)](p)
1 1

p

x 1
p2

xn n!
pn+1

eax 1
p−a for p > a

sin(ax) a
p2+a2

cos(ax) p
p2+a2

sinh(ax) a
p2−a2 for p > |a|

cosh(ax) p
p2−a2 for p > |a|

δ(x) 1

Properties: For any constants α, β and appropriate functions f(x) and g(x),

• L[αf(x) + βg(x)](p) = αL[f(x)](p) + βL[g(x)](p).

• Shifting formula: L[eaxf(x)](p) = L[f(x)](p− a) = F (p− a).5

“Exponential scaling in space shifts the Laplace variable by the negative of that amount.”

• L[y′(x)](p) = pL[y](p)− y(0). (This is an expression in p, and y(0) does not depend on p.)

• L[y′′(x)](p) = p2L[y](p)− py(0)− y′(0).

In the table of transforms above, δ(x) refers to the delta function. Technically speaking, it is not a function but
rather, a “function” that satisfies

• δ(x) = 0 for all x ̸= 0, and

•
∫∞
−∞ δ(x)dx = 1. (In fact, as long as the interval contains zero, then this integral evaluates to 1.)

In other words, it is an “infinite” spike at x = 0 such that the overall integral sums up to 1. For more details on
how to approximate this function, refer to Problem 49.5 in the textbook.

Last but not least, we indicate the inverse Laplace transform as L−1. Roughly speaking, the inverse Laplace
transform of a function F (p) outputs “?(x)”, which is obtained by asking “the Laplace transform of what gives
me F (p)”. Diagrammatically, we have:

L−1[F (p)] = ? ⇐⇒︸ ︷︷ ︸
is the same as asking

F (p) = L[?]︸︷︷︸
The Laplace transform of what gives me F (p)

. (9)

For example,

L[x] = 1

p2
⇐⇒ L−1[L[x](p)] = L−1

[
1

p2

]
⇐⇒ L−1

[
1

p2

]
= x.

4Note that sometimes the dependence on p for L[f(x)] is usually assumed and thus not explicitly written, or it is represented by another
function F (p) as seen above.

5Here, F (p) = L[f(x)](p) represents the Laplace transform of the function without the exponential factor.
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Example 4. Using the shifting formula, for a, b ∈ R, compute the following Laplace transforms :

(i) L[ebxeax] for p > a+ b,

(ii) L[ebxxn],

(iii) L[ebx sin(ax)],

(iv) L[ebx cos(ax)], and

(v) L[ebxδ(x)].

Suggested Solutions:
Recall that “Exponential scaling in space shifts the Laplace variable by the negative of that amount.”

(i) L[ebxeax] = 1
(p−b)−a = 1

p−(a+b)

(ii) L[ebxxn] = n!
(p−b)n+1 ,

(iii) L[ebx sin(ax)] = a
(p−b)2+a2 ,

(iv) L[ebx cos(ax)] = (p−b)
(p−b)2+a2 ,

(v) L[ebxδ(x)] = 1. (There is no p in the output function to shift.)



Fall 23 MATH135 Discussion Supplements 9

Applications and Tips for Computing (Inverse) Laplace Transforms:
To compute the inverse Laplace transform of a rational fraction, the usual strategy is to apply partial fraction
decomposition. Recall that

• Linear Factors: f(p)
(p−a)(p−b) =

A
p−a + B

p−b .
(Add constant

linear factor for each linear factor)

• Repeated Factors: f(p)
(p−a)n = A1

p−a + A2

(p−a)2 + · · ·+ An

(p−a)n

(Repeat for increasing power of p− a in the denominator, with each term having just a constant above.)

• Irreducible Quadratic Factors: f(p)
(p−d)((p+a)2+b) =

A
p−d + Bp+C

(p+a)2+b .
(Use the same strategy as above, but for each irreducible quadratic factor in the denominator, we pick a
linear factor with undetermined coefficients in the numerator.)

Note that A,B,C,A1, · · · , An are constants to be determined.
Then, recall that

• L−1
[
1
p

]
= 1. Hence, by the shifting formula, L−1

[
1

p−a

]
= eax.

• L−1
[

1
p2

]
= x for repeated factors (generalizable to pn in the denominator). Hence, by the shifting

formula, L−1
[

1
(p−a)2

]
= xeax.

• L−1
[

b
p2+b2

]
= sin(bx). Hence, by the shifting formula, L−1

[
b

(p−a)2+b2

]
= eax sin(bx).

Another application is in solving second-order constant coefficient ordinary differential equations (or other
similar variants); ie

y′′(x) +Ay′(x) +By(x) = C, y(0) = y0, y′(0) = y′0

for constants A,B,C, y0, and y′0.

This is done by the following steps:

1. Take Laplace transform on both sides of the equation.
(In the process, use L[y′] = pL[y]− y(0) and L[y′′] = p2L[y]− py(0)− y′(0).)

2. Make Laplace transform the subject of the formula.
(ie. F (p) = ... or L[y](p) = ....)

3. Take inverse Laplace transform on both sides to retrieve the solution y(x). This is done by computing the
inverse Laplace transform on the right-hand side of the result from Step 2.

We will see two examples of this in a bit.
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Example 5. With the help of the table of Laplace transforms and relevant properties, evaluate

(i) L
[
e4x(x+ 1)2

]
,

(ii) L−1
[

1
p+1 + 1

(p−1)2+1

]
, and

(iii) L−1
[

p
(p+1)(p2+4p+5)

]
.

Suggested Solutions:

(i) “Exponential scaling in space shifts the Laplace variable by the negative of that amount.” Hence, it suffices
to evaluate L

[
(x+ 1)2

]
. Note that

L
[
(x+ 1)2

]
= L

[
x2 + 2x+ 1

]
= L[x2] + 2L[x] + L[1]

=
2

p3
+

2

p2
+

1

p
.

(10)

Hence, by the shifting formula, we have

L
[
e4x(x+ 1)2

]
(p) =

2

(p− 4)3
+

2

(p− 4)2
+

1

(p− 4)
. (11)

Note that shifting the space variable does not correspond to exponential scaling in the Laplace variable!
(ie the opposite of the shifting formula is not true.)

(ii) L−1
[

1
p+1 + 1

(p−1)2+1

]
= e−xL−1

[
1
p

]
+ exL−1

[
1

p2+1

]
= e−x + ex sin(x) .

(iii) First, we have to consider the partial fraction decomposition as follows. Since the denominator consists
of a linear factor p+ 1 and an irreducible factor p2 + 4p+ 5 =︸︷︷︸

complete the square

(p+ 2)2 + 1, we have

p

(p+ 1)(p2 + 4p+ 5)
=

A

p+ 1
+

Bp+ C

p2 + 4p+ 5

=
A(p2 + 4p+ 5) + (Bp+ C)(p+ 1)

(p+ 1)(p2 + 4p+ 5)
.

(12)

This implies that p ≡ A(p2 +4p+5)+ (Bp+C)(p+1) = (A+B)p2 + (4A+B +C)p+ (5A+C). Hence,
we have 

A+B = 0,

4A+B + C = 1,

5A+ C = 0.

(13)

Solving the above system gives A = − 1
2 , B = 1

2 , and C = 5
2 . This implies that

p

(p+ 1)(p2 + 4p+ 5)
= −1

2
· 1

p+ 1
+

1

2
· p+ 5

(p+ 2)2 + 1
. (14)

Since

L−1

[
1

p+ 1

]
= e−x

and

L−1

[
p+ 5

(p+ 2)2 + 1

]
= L−1

[
p+ 2

(p+ 2)2 + 1

]
+ 3L−1

[
1

(p+ 2)2 + 1

]
= e−2xL−1

[
p

p2 + 1

]
+ 3e−2xL−1

[
1

p2 + 1

]
= e−2x cos(x) + 3e−2x sin(x),

we have

L−1

[
p

(p+ 1)(p2 + 4p+ 5)

]
= −e

−x

2
+
e−2x

2
(3 sin(x) + cos(x)) . (15)
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Example 6. (Exercise 50.4.) Find the solution of y′′ − 2ay′ + a2y = 0 in which the initial conditions
y(0) = y0 and y′(0) = y′0 are left unrestricted.

Suggested Solutions: To solve the above differential equation, we follow the sequence of steps as outlined
above.

1. Note that L[y′] = pL[y] − y0 and L[y′′] = p2L[y] − py0 − y′0. Hence, by taking the Laplace transform on
both sides of the differential equation, we have

L[y′′]− 2aL[y′] + a2L[y] = 0

p2L[y]− py0 − y′0 − 2a (pL[y]− y0) + a2L[y] = 0

2. Making L[y] the subject of the formula, we have

p2L[y]− py0 − y′0 − 2a (pL[y]− y0) + a2L[y] = 0

(p2 − 2ap+ a2)L[y] = y′0 + (p− 2a)y0

(p− a)2L[y] = y′0 + (p− 2a)y0

L[y] = y′0 + (p− 2a)y0
(p− a)2

.

3. It remains to evaluate the inverse Laplace transform of the expression on the right. One can either use the
standard method of partial fraction decomposition or note that y′0+(p− 2a)y0 = y0(p−a)+ y′0−ay0, and
hence

y′0 + (p− 2a)y0
(p− a)2

=
y0(p− a) + y′0 − ay0

(p− a)2
=

y0
p− a

+
y′0 − ay0
(p− a)2

.

Since

L−1

[
1

p− a

]
= eax

and (“Exponential scaling in space shifts the Laplace variable by the negative of that amount.”)

L−1

[
1

(p− a)2

]
= eaxL−1

[
1

p2

]
= xeax,

we then have

L−1

[
y′0 + (p− 2a)y0

(p− a)2

]
= y0e

ax + (y′0 − ay0)xe
ax.

Hence, we have

y(x) = L−1

[
y′0 + (p− 2a)y0

(p− a)2

]
= y0e

ax + (y′0 − ay0)xe
ax . (16)
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Example 7. (Exercise 50.5.)

(i) By applying L[y′](p) = pL[y](p)− y(0), deduce that

L
[∫ x

0

f(t)dt

]
(p) =

F (p)

p
, (17)

in which
F (p) = L[f(x)](p).

(ii) Hence or otherwise, verify the formula above by computing

L−1

[
1

p(p+ 1)

]
(18)

in two different ways.

Suggested Solutions:

(i) From the above formula, we rearrange to obtain

L[y](p) = L[y′](p) + y(0)

p
. (19)

Now, set y(x) =
∫ x

0
f(t)dt. Observe that

• y(0) =
∫ 0

0
f(t)dt = 0.

• By fundamental theorem of calculus, we have y′(x) = f(x).

Hence, by (19), we have

L
[∫ x

0

f(t)dt

]
(p) =

L[y](p) + 0

p
=
F (p)

p
. (20)

(ii) Method 1: Partial Fractions. By partial fraction decomposition, we have

1

p(p+ 1)
=

1

p
− 1

p+ 1
.

Since L
[
1
p

]
= 1 and L

[
1

p+1

]
= e−x, we have

L−1

[
1

p(p+ 1)

]
(x) = 1− e−x. (21)

Method 2: Using (i). By taking the inverse Laplace transform on both sides of (20), we have∫ x

0

f(t)dt = L−1

[
F (p)

p

]
. (22)

Comparing with L−1
[

1
p(p+1)

]
, we set L[f ](p) = F (p) = 1

p+1 . Since

L−1

[
1

p+ 1

]
= e−x,

this implies that f(x) = L−1
[

1
p+1

]
= e−x. By (22), since∫ x

0

f(t)dt =

∫ x

0

e−tdt = 1− e−x,

we have

1− e−x = L−1

[
1

p(p+ 1)

]
. (23)

This gives the same answer as from the first method.
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Example 8. (Exercise 50.6.) By using (17) from Example 7 or otherwise, solve the following differential
equation:

y′ + 4y + 5

∫ x

0

y(t)dt = e−x, y(0) = 0. (24)

Suggested Solutions:

Method 1: Using Example 7. By taking the Laplace transform on both sides of the differential equation, we have

L[y′] + 4L[y] + 5L
[∫ x

0

y(t)dt

]
= L[e−x]

pL[y]− y(0) + 4L[y] + 5

(
L[y]
p

)
=

1

p+ 1(
p+ 4 +

5

p

)
L[y] = 1

p+ 1

L[y] = p

(p+ 1)(p2 + 4p+ 5)
.

(25)

Method 2: Differentiating the differential equation. By differentiating (24) on both sides, we obtain

y′′ + 4y′ + 5y = −e−x. (26)

Since this is a second-order differential equation, we need an initial condition for y′(0). This can be obtained by
substituting x = 0 into (24). Indeed, this yields

y′(0) = −4y(0)− 5

∫ 0

0

y(t)dt+ e−0 = 1. (27)

We now perform the usual strategy of taking the Laplace transform on both sides of (26) to obtain

p2L[y]− py(0)− y′(0) + 4(pL[y]− y(0)) + 5L[y] = −L[e−x]

(p2 + 4p+ 5)L[y]− 1 = − 1

p+ 1

(p2 + 4p+ 5)L[y] = p

p+ 1

L[y] = p

(p+ 1)(p2 + 4p+ 5)
.

(28)

In both methods, we see that we obtain the same expression for L[y]. Taking the inverse Laplace transform on
both sides and applying our results from Example 5 (iii), we have

y(x) = L−1

[
p

(p+ 1)(p2 + 4p+ 5)

]
= −e

−x

2
+
e−2x

2
(3 sin(x) + cos(x)) . (29)
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3 Discussion 3

More Properties of Laplace Transforms.

Recall the table of Laplace Transforms below:

f(x) F (p) = L[f(x)](p)
1 1

p

x 1
p2

xn n!
pn+1

eax 1
p−a for p > a

sin(ax) a
p2+a2

cos(ax) p
p2+a2

sinh(ax) a
p2−a2 for p > |a|

cosh(ax) p
p2−a2 for p > |a|

δ(x) 1

For any two given functions f and g, we define the convolution of f and g, denoted by f ∗ g, as

(f ∗ g)(x) =
∫ x

0

f(x− y)g(y)dy. (30)

Updated List of Properties: For any constants α, β and appropriate functions f(x) and g(x), we denote F (p) =
L[f(x)](p) and G(p) = L[g(x)](p). Then, we have the following properties for Laplace transforms and

• Linearity: L[αf(x) + βg(x)](p) = αL[f(x)](p) + βL[g(x)](p).

• Shifting formula: L[eaxf(x)](p) = F (p− a).

• Laplace Transform of Derivative: L[y′(x)] = pF (p)− y(0).

• Laplace Transform of Derivative: L[y′′(x)] = p2L[y](p)− py(0)− y′(0).

• Laplace Transform of Integrals (See Exercise 50.5): L
[∫ x

0
f(t)dt

]
(p) = F (p)

p .

• Derivatives of Laplace Transforms: L[(−x)nf(x)](p) = dn

dpnF (p).

• Integrals of Laplace Transforms: L
[
f(x)
x

]
(p) =

∫∞
p
F (s)ds.

• Convolution Theorem: L[f ∗ g](p) = F (p)G(p).
“Laplace transform of the convolution is the product of their Laplace transforms.”

Recall from above that L
[
f(x)
x

]
=
∫∞
0
e−px f(x)

x dx =
∫∞
p
F (s)ds. By taking the limit as p→ 0, formally, we have∫ ∞

0

f(x)

x
dx =

∫ ∞

0

F (s)ds =

∫ ∞

0

F (p)dp. (31)

This can be useful in evaluating integrals of the form in (31).

Convolution theorem can be useful in helping to solve some integral equations of the form:

y(x) = g(x) +

∫ x

0

f(x− t)y(t)dt

for some given functions f and g. This is because we could rewrite the above as

y(x) = g(x) + (f ∗ y)(x).
Taking Laplace transform yields

L[y] = L[g] + L[f ∗ y].
By the convolution theorem, we have

L[y] = L[g] + L[f ]L[y].
We can now make L[y] the subject of the formula:

L[y] = L[g]
1− L[f ]

and perform inverse Laplace transform accordingly assuming that 1− L[f ] ̸= 0.
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Example 9.

(i) Using L[(−x)nf(x)](p) = dn

dpnF (p), evaluate L
[
x2ex

]
for p > 1.

(ii) (Exercise 51.7a) By using (31), show that f(ξ) =
∫∞
0

sin(ξx)
x dx = π

2 for all ξ > 0.

Suggested Solutions:

(i) Observe that since

L[(−x)2f(x)] = L[x2f(x)] = d2

dp2
F (p)

and L[ex] = 1
p−1 for p > 1, we have

L[x2ex] = d2

dp2

(
1

p− 1

)
=

2

(p− 1)3
.

(ii) By applying (31), recall that

L[sin(ξx)] = ξ

p2 + ξ2
.

Hence, we have for each ξ > 0,

f(ξ) =

∫ ∞

0

sin(ξx)

x
dx =

∫ ∞

0

ξ

p2 + ξ2
dp = arctan

(
p

ξ

)
|p=∞
p=0 =

π

2
− 0 =

π

2
.

Here, we use the fact that arctan(0) = 0 and arctan(∞) = π/2.
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Example 10. Solve the following integro-differential equation:

y′(x) = −y(x)−
∫ x

0

et−xy(t)dt

with initial condition y(0) = 1.

Suggested Solutions:

Observe that the above can be re-written using convolution (with f(x) = e−x) as:

y′(x) = −y(x)− (f ∗ y)(x).

Taking the Laplace transform on both sides of the equation, using y(0) = 0, L[e−x] = 1/(p+ 1),
L[y′] = pL[y]− y(0), and the convolution theorem, we have

pL[y]− y(0) = −L[y]− L[f ∗ y]
pL[y]− 1 = −L[y]− L[f ]L[y]

pL[y]− 1 = −L[y]−
(

1

p+ 1

)
L[y](

p+ 1 +
1

p+ 1

)
L[y] = 1

L[y] = p+ 1

(p+ 1)2 + 1
.

(32)

By taking the inverse Laplace transform and recalling that
“Exponential scaling in space shifts the Laplace variable by the negative of that amount”, we thus deduce that

y(x) = L−1

[
(p+ 1)

(p+ 1)2 + 1

]
(x)

= e−xL−1

[
p

p2 + 1

]
(x)

= e−x cos(x) .

(33)
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4 Discussion 4

Picard’s Method of Successive Approximation.

We begin by considering the initial value problem of the form{
y′(x) = f(x, y(x)),

y(x0) = y0,
(34)

where f(x, y) is an arbitrary function defined and continuous in some neighborhood of the point (x0, y0).
Picard’s method of successive approximations aims to approximate the solutions to (34) as follows. By integrat-
ing the differentiation equation in (34) starting from x0, we have the equivalent integral equation

y(x) = y0 +

∫ x

x0

f(t, y(t))dt. (35)

By viewing (35) as
y = G(y) (36)

for some “operator/function/map” G, where G(y)(x) = y0 +
∫ x

x0
f(t, y(t))dt, if we let y0(x) = y0 and consider

the iteration
yn+1 = G(yn). (37)

If the sequence of functions converges to some ŷ, then we take limits as n goes to infinity on both sides of (37)
and assuming that we can interchange G and limits, we then have

ŷ = G(ŷ).

The above equation also implies that ŷ (the limit of the sequence) solves (37) and hence the integral equation
(35), and henceforth the initial value problem in (34).

Explicitly, the method demands that we do the following:

1. Let y0(x) = y0.

2. Compute the sequence of functions y1(x), y2(x), ... using the formula

yn+1(x) = y0 +

∫ x

x0

f(t, yn(t))dt.

We shall see an example of Picard’s method as mentioned above in action in the example on the next page.
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Example 11. Consider the initial value problem{
y′(x) = −xy,
y(0) = 1,

(38)

for x > 0.

(i) Determine the exact solution to (38).

(ii) Apply Picard’s method with y0(x) = y(0) to calculate y1(x), y2(x), and y3(x).

(iii) How does your solution in (ii) compare with that in (i)?

Suggested Solutions:

(i) By separation of variables, we have

dy

dx
= −xy →

∫
1

y
dy = −

∫
xdx.

Hence,

ln |y| = −x
2

2
+ C, or y(x) = Ae−

x2

2 .

Plugging in y(0) = 1 gives A = 1. The solution to (38) is thus given by

y(x) = e−
x2

2 .

(ii) Let y0(x) = y(0) = 1 for each x > 0. Note that Picard’s method gives the following iteration:

yn+1(x) = y(0) +

∫ x

0

f(t, yn(t))dt. (39)

Since f(x, y) = −xy and y(0) = 1, we have

yn+1(x) = 1−
∫ x

0

tyn(t)dt. (40)

Hence,

y1(x) = 1−
∫ x

0

ty0(t)dt = 1−
∫ x

0

tdt = 1− x2

2

y2(x) = 1−
∫ x

0

ty1(t)dt = 1−
∫ x

0

t(1− t2/2)dt = 1− x2

2
+

x4

2× 4
= 1− x2

2
+

1

2

(
x2

2

)2

y3(x) = 1−
∫ x

0

ty2(t)dt = ... = 1− x2

2
+
x4

8
− x6

48

= 1 +

(
−x

2

2

)
+

1

2!

(
−x

2

2

)2

+
1

3!

(
−x

2

2

)3

.

(41)

(iii) One can observe by pattern recognition (or formal computations) that

yn(x) = 1 +

(
−x

2

2

)
+

1

2!

(
−x

2

2

)2

+ · · ·+ 1

n!

(
−x

2

2

)n

.

Furthermore, recall that the Taylor series for ew is given by

ew = 1 + w +
1

2!
w2 + · · ·+ 1

n!
wn + · · · ,

which implies that the Taylor series for e−
x2

2 is given by

e−
x2

2 = 1 +

(
−x

2

2

)
+

1

2!

(
−x

2

2

)2

+ · · ·+ 1

n!

(
−x

2

2

)n

+ · · · .

We conclude that the n-th approximation of Picard’s method corresponds to the Taylor series of the actual
solution truncated up till the n-th order/term.
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Existence and Uniqueness of Solutions to Initial Value Problems.

Recall the initial value problem in (34): {
y′(x) = f(x, y(x)),

y(x0) = y0,
(42)

where f(x, y) is an arbitrary function defined and continuous in some neighborhood of the point (x0, y0).
The following theorem guarantees the existence and uniqueness of the solution to (42).

Theorem 12. (Picard’s Theorem; Theorem A.) Let f(x, y) and ∂f
∂y be continuous functions of x and y on

a closed rectangle R given by

R = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}

for some real numbers a < b and c < d. If (x0, y0) is any interior point of R,a then there exists a number
h > 0 with the property that the initial value problem in (42) has a unique solution on the interval
|x− x0| ≤ h.

aIn other words, a < x0 < b and c < y0 < d.

Next, we shall give a slight improvement to Picard’s theorem above. Before that, we review what it means for a
function to be Lipschitz below.

Definition 13. A function F : [a, b] → R with a < b is Lipschitz if there is a constant L > 0 such that for
all x, y ∈ [a, b], we have

|F (x)− F (y)| ≤ L|x− y|.

We call L here the associated Lipschitz constant.

We are now ready to state the improvement of Picard’s theorem below.

Theorem 14. (Picard’s Theorem; Theorem A Modified.) Let f(x, y) be continuous functions of x and y
on a closed rectangle R given by

R = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}

for some real numbers a < b and c < d. Furthermore, we also demand that for any given x ∈ [a, b],
f(x, ·) is Lipschitz with Lipschitz constant not depending on x. In other words, there exists a constant
L > 0 such that for each x ∈ [a, b], y1, y2 ∈ R,

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|

with L not depending on x.

If (x0, y0) is any interior point of R, then there exists a number h > 0 with the property that the initial
value problem in (42) has a unique solution on the interval |x− x0| ≤ h.

Note that Theorem A only guarantees local existence and uniqueness. For global existence and uniqueness, see
Theorem B below.
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Theorem 15. (Theorem B.) Let f(x, y) be continuous functions of x and y on a closed strip S given by

S = {(x, y) ∈ R2 : a ≤ x ≤ b, −∞ < y <∞}

for some real numbers a < b. In addition, we also demand that for any given x ∈ [a, b], f(x, ·) is Lipschitz
with Lipschitz constant not depending on x. In other words, there exists a constant L > 0 such that for
each x ∈ [a, b], y1, y2 ∈ R,

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|

with L not depending on x.

If (x0, y0) ∈ S, then the initial value problem (42) has a unique solution on the interval x ∈ [a, b].

Remarks:

• Theorem A Modified is stronger than Theorem A since ∂f
∂y is continuous on a closed rectangle implies that

f(x, ·) is Lipschitz (in y). This follows from the mean value theorem since for each y1 < y2, we have

|f(x, y1)− f(x, y2)| ≤
∣∣∣∣∂f∂y (x, y∗)

∣∣∣∣ |y2 − y1|

for some y∗ ∈ [y1, y2]. Hence, continuity of ∂f
∂y on a closed rectangle implies bounded, and thus∣∣∣∣∂f∂y (x, y)

∣∣∣∣ ≤ C

for some positive constant C > 0. In particular,
∣∣∣∂f∂y (x, y∗)∣∣∣ ≤ C and thus f(x, ·) is Lipschitz with Lipschitz

constant C. The is consistent with the proof of Theorem A which only utilizes the fact that f(x, ·) is
Lipschitz, which is implied by continuity of ∂f

∂y on a closed rectangle.

• The above pointer also implies that

On a closed rectangle, Differentiable =⇒ Lipschitz.

Hence, on some occasions, it might suffice to apply Theorem B by showing that f(x, y) is differentiable
with respect to y. Furthermore, the implication is not true if we are not considering a closed rectangle

Note that the converse is not true; there are Lipschitz functions that are not differentiable. Take f(x) = |x|
with x ∈ R for instance; it is a Lipschitz function with Lipschitz constant 1 but it is not differentiable at
x = 0.

• A useful tool for proving that a function is Lipschitz (or not) is the triangle inequality. It states that for any
a, b ∈ R,

||b| − |a|| ≤ |b− a| ≤ |b|+ |a|.

• If the Lipschitz condition is dropped and we only assume that f(x, y) is continuous, then we have the
Peano’s theorem. The theorem only guarantees existence, and not uniqueness.
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Example 16. Show that f(x, y) = e−xy3 is Lipschitz in y for (x, y) ∈ [0,∞)× [−3, 3].

Suggested Solutions: In other words, we want to show that there is constant L (independent of x) such that for
all y1, y2 ∈ [−3, 3], we have

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|.

We start from the left-hand side and observe that

|e−xy31 − e−xy32 | = |e−x||y31 − y32 |
≤ 1 · |y31 − y32 | 0 ≤ e−x ≤ 1 for all x ≥ 0

≤ |(y1 − y2)(y
2
1 + y1y2 + y22)| a3 − b3 = (a− b)(a2 + ab+ b2)

≤
(
|y1|2 + |y1||y2|+ |y2|2

)
|y1 − y2| Triangle inequality|a+ b+ c| ≤ |a|+ |b|+ |c|

≤
(
32 + 3× 3 + 32

)
|y1 − y2| Since y1, y2 ∈ [−3, 3], so |y1|, |y2| ≤ 3

≤ 27|y1 − y2|.
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Example 17. (Exercise 70.7, Modified.) Consider the initial value problem given by{
y′(x) = f(y(x)),

y(x0) = y0,
(43)

with f(y) = y|y| for y ∈ R.

(i) Show that f is differentiable on R and compute f ′(y) for each y ∈ R.

(ii) Hence, show that f ′(y) is continuous on R.

(iii) Show that f(y) is Lipschitz on [0, 1], but not on R.

(iv) Using your answer in (i), (ii), and Theorem A, deduce the set of points (x0, y0) for which (43) has
a unique solution on some interval |x− x0| ≤ h.

Suggested Solutions:

(i) Observe that for y > 0, we have f(y) = y2. For y < 0, we have f(y) = −y2. Hence, for y ̸= 0, we can
compute f ′(y) directly to give

f ′(y) =

{
2y for y > 0,

−2y for y < 0.

It remains to show that f ′(0) exists and compute its value. By the definition of derivative, we want to
show that the limit

f ′(0) = lim
h→0

f(h)− f(0)

h− 0
= lim

h→0

f(h)

h

exists. Since f(h) takes two different arguments depending on if h < 0 or h > 0, we shall instead show
that the limit exists by showing that

f ′(0) = lim
h→0

f(h)

h
= lim

h→0+

f(h)

h
= lim

h→0−

f(h)

h
.

Observe that

lim
h→0+

f(h)

h
= lim

h→0+

h2

h
= lim

h→0+
h = 0

and

lim
h→0+

f(h)

h
= lim

h→0−

−h2

h
= lim

h→0−
−h = 0.

This then implies that f ′(0) = 0, and thus

f ′(y) =


2y for y > 0,

0 for y = 0,

−2y for y < 0.

Hence f is differentiable on R with the derivative given above.

(ii) With f ′(y) as computed in (i), to see that f ′ is continuous on R, it suffices to check that it is continuous at
y = 0. Indeed, we have

lim
y→0+

f ′(y) = lim
y→0+

2y = lim
y→0−

f ′(y) = lim
y→0−

(−2y) = 0 = f ′(0).

(iii) Lipschitz on [0, 1]. Take any y1, y2 ∈ [0, 1]. Then, we have

|f(y1)− f(y2)| = |y1|y1| − y2|y2|| = ||y1|(y1 − y2) + y2(|y1| − |y2|)|
≤ |y1||y1 − y2|+ |y2| ||y1| − |y2|| ≤ |y1||y1 − y2|+ |y2| |y1 − y2|
≤ (|y1|+ |y2|)|y1 − y2| ≤ 2|y1 − y2|.
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Not Lipschitz on R. Suppose for a contradiction that it is. Then for all y1, y2 ∈ R, |f(y1) − f(y2)| =
|y1|y1| − y2|y2|| ≤ L|y1 − y2| for some constant L > 0. In particular, at y2 = 0, we have

|y1|y1|| ≤ L|y1| =⇒ |y1|2 ≤ L|y1| =⇒ |y1| ≤ L.

Since this has to be true for all y1 ∈ R, we pick y1 = 2L. The above tells us that 2L ≤ L, a contradiction.
Hence, f is not Lipschitz on R.

(iv) Since for each (x0, y0), the functions f(y) and f ′(y) are continuous, we can apply Theorem A on any
closed rectangle containing (x0, y0) in its interior and conclude that for all (x0, y0) ∈ R2, (43) has a
unique solution on some interval |x− x0| ≤ h.



Fall 23 MATH135 Discussion Supplements 24

Example 18. (Leaky Bucket Problem; Strogatz 2.5.6 Modified.) Consider a water bucket with a hole in
the bottom. Water flows out of the bucket through the hole and leaves a puddle of water on the ground.
Let h(t) be the height of the water remaining in the bucket at time t, and k be a positive constant.
By employing relevant physical laws, one can show that the height evolves according to the following
differential equation:

h′(t) = −k
√
h(t).

Let f(t, h) = −k
√
h for each t ∈ R and h ≥ 0. We then observe that the differential equation can be

written as
h′(t) = f(t, h(t)). (44)

(i) Show that f(t, h) is not Lipschitz in h on R× [0,∞).

(ii) Given the initial condition h(0) = 0, demonstrate that non-uniqueness actually happens with (44)
for t < 0.

(iii) Briefly explain why the existence of a solution is guaranteed despite exhibiting non-uniqueness as
seen in (ii).

(iv) Give a physical interpretation of the non-uniqueness phenomenon as observed in (ii).

Suggested Solutions:

(i) Suppose for a contradiction that it is. Then, there is a constant L > 0 such that for all t ∈ R, h1, h2 ≥ 0,
we have

| − k
√
h1 + k

√
h2| = |f(t, h1)− f(t, h2)| ≤ L|h1 − h2|.

Since this is true for all h1, h2 ≥ 0, we pick h2 = 0. Then, this implies

k
√
h1 ≤ L|h1| = L

√
h1

2
=⇒

√
h1 ≥ k/L.

Now, pick h1 = k2

4L2 . The above inequality then implies that

k/(2L) ≥ k/L,

which is a contradiction (since k and L are all positive).

(ii) Observe that for h′ = −k
√
h, with h(0) = 0, the constant solution

h(t) = 0

satisfies the initial condition and solves the ODE (since h′ = h = 0 for each t).

On the other hand, we can employ the separation of variables as follows. Since

dh

dt
= −kh1/2 =⇒

∫
h−1/2dh =

∫
−kdt =⇒

√
h

1/2
= −kt+ C.

Hence, we have

h(t) =

(
C − kt

2

)2

.

Employing the initial condition h(0) = 0, we will have C = 0. This implies that

h(t) =
k2t2

4
, for t < 0 (45)

is yet another solution that solves the initial value problem that is not the zero function. We have thus
demonstrated that there are two different solutions to the ODE. Hence, the differential equation exhibits
non-uniqueness.
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Remark: In fact, any function of the form

h(t) =

{
k2(t−t0)

2

4 for t < t0

0 for t0 ≤ t ≤ 0
(46)

for any t0 < 0 is a solution! This implies that we have infinitely many solutions to the differential
equation!!

(iii) Even though f(t, h) is not Lipschitz in h for (t, h) ∈ R × [0,∞), it is nonetheless continuous in this same
domain. Peano’s theorem thus applies, at least on the time interval |t| ≤ h for some h > 0. Hence, we
must still be able to “solve” the differential equation for a small time, which implies that solutions have to
exist.

(iv) Physical Interpretation: If you see an empty bucket with a puddle of water, it is not immediately obvious if
the bucket has been emptied some time ago (in (46), that corresponds to t0), or was it just emptied when
you first look at the bucket (in (46), that corresponds to t0 = 0 so we are looking at (45)).
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5 Discussion 5

Preliminaries for Fourier Series

The main question of interest to ask is if we can write any function f(x) in a trigonometric series of the form

f(x) =
1

2
a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx)). (47)

Before we begin with the rigorous theory, we would like to be able to perform formal computations without
needing to worry about convergence of the series etc. Furthermore, for ease of computation, we will be consid-
ering a function that is defined on the closed interval x ∈ [−π, π].

Before we begin, we shall recap a couple of trigonometric identities as follows.

• Basic Identities:
sin(θ)2 + cos(θ)2 = 1,

sin(−θ) = − sin(θ),

cos(−θ) = cos(θ).

• Angle Sum:
sin(α± β) = sinα cosβ ± cosα sinβ,

cos(α± β) = cosα cosβ ∓ sinα sinβ.

• Double Angle Formulas (set α = β from above):

sin(2θ) = 2 sin θ cos θ,

cos(2θ) = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ,

• Factor Formulae:
sin θ cosφ =

1

2
(sin(θ + φ) + sin(θ − φ)) ,

cos θ cosφ =
1

2
(cos(θ − φ) + cos(θ + φ)) ,

sin θ sinφ =
1

2
(cos(θ − φ)− cos(θ + φ)) .

In particular, by setting θ = mx and φ = nx, we have

sinmx cosnx =
1

2
(sin ((m+ n)x) + sin ((m− n)x)) ,

cosmx cosnx =
1

2
(cos ((m+ n)x) + cos ((m− n)x)) ,

sinmx sinnx =
1

2
(cos ((m− n)x)− cos ((m+ n)x)) .

• Orthogonality: For non-negative integers m and n, we have∫ π

−π

sin(mx) cos(nx)dx = 0, for all m ̸= n and n ≥ 1,m ≥ 0,∫ π

−π

sin(mx) sin(nx)dx = 0, for all m ̸= n and m,n ≥ 0,∫ π

−π

cos(mx) cos(nx)dx = 0, for all m ̸= n and m,n ≥ 1,

The above formulae are evaluated with the help of factor formulae. Note that they do not cover the case
when m = n, or if the coefficient inside the cos term is zero (and hence cos(0x) = 1). These are evaluated
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below (which one can check with the help of trigonometric formulas):∫ π

−π

sin2(mx)dx = π, for all m ≥ 1,∫ π

−π

sin(mx)dx =

∫ π

−π

cos(mx)dx = 0, for all m ≥ 1,∫ π

−π

cos2(nx)dx = π, for all n ≥ 1,∫ π

−π

1dx = 2π, n = 0 for the above formula.

These formulae imply that 1, sin(nx), cos(nx) forms an “orthogonal basis” for some appropriate “space of
functions” which we will talk more about as we go deep into the rigorous theory for the above concept.

To evaluate the coefficients in (47), we multiply both sides of the equation by sin(mx) to obtain

sin(mx)f(x) =
1

2
a0 sin(mx) +

∞∑
n=1

(an sin(mx) cos(nx) + bn sin(mx) sin(nx)). (48)

Integrating from −π to π and assuming that we can interchange integration and derivatives, we have∫ π

−π

sin(mx)f(x)dx =
1

2
a0

∫ π

−π

sin(mx)dx+

∞∑
n=1

(an

∫ π

−π

sin(mx) cos(nx)dx+ bn

∫ π

−π

sin(mx) sin(nx)dx). (49)

By the orthogonality formula, we see that the only integral on the right that survives is when m = n, and we
are forced to evaluate

∫ π

−π
sin2(mx)dx = π. Thus, we have

πbm =

∫ π

−π

sin(mx)f(x)dx

bm =
1

π

∫ π

−π

sin(mx)f(x)dx for m ≥ 1.

(50)

Using a similar idea but by multiplying with cos(mx) for m ≥ 1 instead, we have

am =
1

π

∫ π

−π

cos(mx)f(x)dx for m ≥ 1. (51)

Last but not least, to evaluate a0, we do not multiply by anything and integrate from −π to π to obtain∫ π

−π

f(x)dx =
1

2
a0

∫ π

−π

1dx+

∞∑
n=1

(an

∫ π

−π

cos(nx)dx+ bn

∫ π

−π

sin(nx)dx) =
1

2
a0 · 2π. (52)

Hence, we have

a0 =
1

π

∫ π

−π

f(x)dx. (53)

Thus, we see that the formula in (51) can be generalized for m ≥ 0. Henceforth, the Fourier coefficients an
and bn for the series (also known as the Fourier series) in (47) are given by

an =
1

π

∫ π

−π

cos(nx)f(x) for n ≥ 0 ,

bn =
1

π

∫ π

−π

sin(nx)f(x) for n ≥ 1 .

(54)
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Example 19. Find the Fourier series for the function defined by f(x) = 1 for all x ∈ [−π, π].

Suggested Solutions: Using the formulas in (54), we have

• For n ≥ 1, we have

an =
1

π

∫ π

−π

cos(nx)dx =
1

π

sin(nx)

n
|x=π
x=−π =

1

nπ
(sin(nπ)− sin(−nπ)) = 0

since sin(nπ) = 0 for any integer n. The above integration does not hold for n = 0 since the general
formula for integrating cos does not hold if the argument in it is zero (because this reduces to a constant
function 1 that integrates to x, which we will see in a bit).

• For a0, we have

a0 =
1

π

∫ π

−π

dx =
2π

π
= 2.

• For n ≥ 1, we have

bn =
1

π

∫ π

−π

sin(nx)dx = 0.

(This definite integral has been computed under orthogonal formulae above.)

Hence, we have

f(x) =
1

2
a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx))

=
1

2
(2π)

= 1.

This is not surprising since 1, sin(nx), cos(nx) are orthogonal functions, and hence if we try to represent one of
the basis functions with this basis, you should only be able to retrieve itself!
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Example 20. Using the concept of orthogonality, deduce the Fourier series for the function

f(x) = sin(x+ 1) for x ∈ [−π, π]

without explicitly computing the Fourier coefficients in (54).

Suggested Solutions:

Observe that by the sum of angles formula, we have

sin(x+ 1) = sin(x) cos(1) + cos(x) sin(1)

f(x) = sin(1) cos(x) + cos(1) sin(x) .

Hence, the above equation is in the form of a Fourier series, with a1 = sin(1), b1 = cos(1), and an = bn = 0 for
all other valid values of n.
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Mathematical Preliminaries for Fourier Series

For a function f(x), we say that:

• It is bounded if there is a constant M such that for all x in consideration,

|f(x)| ≤M. (55)

• It is continuous at x0 if

lim
x→x+

0

f(x) and lim
x→x−

0

f(x) exist, and lim
x→x+

0

f(x) = lim
x→x−

0

f(x) = f(x0). (56)

• It is differentiable at x0 if

lim
x→x0

f(x)− f(x0)

x− x0
exist. (57)

We then define

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
. (58)

• It is discontinuous at x0 if it is not continuous at x0.

There are many ways in which a function can be discontinuous (that is, (56) fails). These types of discontinuity
are listed below.

1. We can have that the limits limx→x+
0
f(x) and limx→x−

0
f(x) exist, and are equal, but

lim
x→x+

0

f(x) = lim
x→x−

0

f(x) ̸= f(x0). (59)

We call this type of discontinuity a removable discontinuity. For convenience, we shall assume that
the functions we are considering do not have removable continuity, as a finite number of these6 will not
modify the integrals in the Fourier coefficients as seen in (54).

2. Furthermore, we can also have that the limits exist but we have

lim
x→x+

0

f(x) ̸= lim
x→x−

0

f(x). (60)

We call this type of discontinuity a simple/jump discontinuity. In other words, since the left and right
limits are not equal, there is a “jump” in the function corresponding to the difference in the limits from
the left and right.

−2 −1 1 2

−1

1

2

x

f(x)

−2 −1 1 2

−1

1

2

x

f(x)

−2 −1 1 2

−1

1

2

Filled red circle - Included; Hollow red circle - Excluded;
Left graph - Removable discontinuity at x = 0;
Right graph - Simple/jump discontinuity at x = 0.

6We only consider finitely many discontinuities as this is under the hypothesis of Dirichlet theorem, as we shall see in the next discussion.
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Observe that from the plots above the following facts:

• sin
(
1
x

)
is discontinuous at x = 0, and this is not a simple/jump discontinuity. In fact, the limit limx→0 sin

(
1
x

)
does not exists (as the function oscillates between −1 and 1 arbitrarily fast)!

• x sin
(
1
x

)
is continuous at x = 0, since

lim
x→0+

x sin

(
1

x

)
= lim

x→0−
x sin

(
1

x

)
= 0.

It is not differentiable at x = 0 since

lim
h→0

h sin(1/h)− 0

h
= lim

h→0
sin(1/h)

does not exist.

• x2 sin
(
1
x

)
is continuous at x = 0. Furthermore, it is differentiable at x = 0 since

lim
h→0

h2 sin(1/h)− 0

h
= lim

h→0
h sin(1/h) = 0.

However, its derivative given by

f ′(x) = 2x sin

(
1

x

)
+ cos

(
1

x

)
is not continuous at x = 0 due to the highly oscillatory cos

(
1
x

)
term. In fact, we could also see that the

discontinuity in the derivative is not simple due to the same highly oscillatory cos
(
1
x

)
term.
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Midterm Review:
Note: The examples/exercises below are selected modified problems from the homework problems and discus-
sion supplements (usually problems that I did not manage to go through in class for that week). These are
solely done for practice purposes and are not necessarily reflective of the nature of questions in the midterm.

1. Solving ODEs.

• For an inhomogeneous ODE, we have

y(x) = yg(x) + yp(x),

where yg(x) is the solution to the homogeneous problem (RHS = 0) and yp(x) is a particular solution to
the ODE.

• For yg(x), solve characteristic polynomial for λ. For second-order ODE, the solutions will be given by
Roots are real and distinct y(x) = C1e

λ1x + C2e
λ2x

Roots are complex y(x) = e−Re(λ)x(A cos(Im(λ)x) +B sin(Im(λ)x)
Roots are repeated y(x) = eλx(C1 + C2x)

• For yp(x), you have to guess this by employing the variation of parameters technique according to what is
on the right-hand side of the equation.

• Know how to solve the Cauchy-Euler’s equation of the form

ax2y′′(x) + bxy′(x) + cy(x) = 0.

2. Computing Laplace Transforms - Table of Laplace Transforms and Properties

• Recall the table of Laplace Transforms below:

f(x) F (p) = L[f(x)](p)
1 1

p

x 1
p2

xn n!
pn+1

eax 1
p−a for p > a

sin(ax) a
p2+a2

cos(ax) p
p2+a2

sinh(ax) a
p2−a2 for p > |a|

cosh(ax) p
p2−a2 for p > |a|

δ(x) 1

• – Linearity: L[αf(x) + βg(x)](p) = αL[f(x)](p) + βL[g(x)](p).
– Shifting formula: L[eaxf(x)](p) = F (p− a).

– Laplace Transform of Derivative: L[y′(x)] = pF (p)− y(0).

– Laplace Transform of Derivative: L[y′′(x)] = p2L[y](p)− py(0)− y′(0).

– Laplace Transform of Integrals (See Exercise 50.5): L
[∫ x

0
f(t)dt

]
(p) = F (p)

p .

– Derivatives of Laplace Transforms: L[(−x)nf(x)](p) = dn

dpnF (p).

– Integrals of Laplace Transforms: L
[
f(x)
x

]
(p) =

∫∞
p
F (s)ds.

– Convolution Theorem: L[f ∗ g](p) = F (p)G(p).
“Laplace transform of the convolution is the product of their Laplace transforms.”

– L[y′(x)](p) = pL[y](p)− y(0). (This is an expression in p, and y(0) does not depend on p.)

– L[y′′(x)](p) = p2L[y](p)− py(0)− y′(0).
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• For computing inverse Laplace transforms, for quadratic factors in the denominator, always check if it is
factorizable (and hence do partial fraction decomposition), or if it is irreducible (in this case, look at the
Laplace transforms of sin and cos).

3. Existence and Uniqueness of Solutions to ODEs.{
y′(x) = f(x, y(x)),

y(x0) = y0,
(61)

• Picard’s Method/Iteration:

1. Let y0(x) = y0.

2. Compute the sequence of functions y1(x), y2(x), ... using the formula

yn+1(x) = y0 +

∫ x

x0

f(t, yn(t))dt.

• A function F : [a, b] → R with a < b is Lipschitz if there is a constant L > 0 such that for all x, y ∈ [a, b],
we have

|F (x)− F (y)| ≤ L|x− y|.

We call L here the associated Lipschitz constant.

• (Picard’s Theorem; Theorem A.) Let f(x, y) and ∂f
∂y be continuous functions of x and y on a closed

rectangle R given by
R = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}

for some real numbers a < b and c < d. If (x0, y0) is any interior point of R,7 then there exists a num-
ber h > 0 with the property that the initial value problem in (42) has a unique solution on the interval
|x− x0| ≤ h.

(Picard’s Theorem; Theorem A Modified.) Let f(x, y) be continuous functions of x and y on a closed
rectangle R given by

R = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}

for some real numbers a < b and c < d. Furthermore, we also demand that for any given x ∈ [a, b], f(x, ·)
is Lipschitz with Lipschitz constant not depending on x. In other words, there exists a constant L > 0 such
that for each x ∈ [a, b], y1, y2 ∈ R,

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|

with L not depending on x. If (x0, y0) is any interior point of R, then there exists a number h > 0 with
the property that the initial value problem in (42) has a unique solution on the interval |x− x0| ≤ h..

(Peano’s Theorem.) If f is only continuous, we can guarantee local existence, but not uniqueness. In
other words, if (x0, y0) is any interior point of R, then there exists a number h > 0 with the property that
the initial value problem in (42) has a solution on the interval |x− x0| ≤ h.

(Theorem B.) Let f(x, y) be continuous functions of x and y on a closed strip S given by

S = {(x, y) ∈ R2 : a ≤ x ≤ b, −∞ < y <∞}

for some real numbers a < b. In addition, we also demand that for any given x ∈ [a, b], f(x, ·) is Lipschitz
with Lipschitz constant not depending on x. In other words, there exists a constant L > 0 such that for
each x ∈ [a, b], y1, y2 ∈ R,

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|

with L not depending on x.

If (x0, y0) ∈ S, then the initial value problem (42) has a unique solution on the interval x ∈ [a, b].

7In other words, a < x0 < b and c < y0 < d.
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• Know when to apply Theorem A (local existence) and B (global existence), and how to check if the
hypothesis holds (in particular, check if a function is Lipschitz in y).

• Be aware of an example illustrating a lack of uniqueness or existence of solutions. This happens when
the above theorems cannot be applied (See Section 70 Problem 1 and Discussion 4 Example on the Leaky
Bucket problem).
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Some practice problems:

Exercise 1. Solve the following initial value problems:

(i) y′′(x) + 9y(x) = cos(x), y(0) = 1, y′(0) = 0,

(ii) y′′(x)− y′(x)− 2y(x) = e3x, y(0) = 1, y′(0) = 0,

(iii) x2y′′(x)− xy′(x) = 0, y(1) = 1, y′(1) = 1.

Exercise 2. Evaluate L[xe10x sin(x)].
Hint: Use two properties of Laplace transforms to reduce this to one of the usual Laplace transforms.

Exercise 3. Evaluate L−1
[

1
p2−p−2

]
.

Exercise 4. (Exercise 50.6.) By using the property

L
[∫ x

0

f(t)dt

]
(p) =

F (p)

p
,

solve the following differential equation:

y′ + 4y + 5

∫ x

0

y(t)dt = e−x, y(0) = 0. (62)

Exercise 5. Solve the following integro-differential equation:

y′(x) = −y(x)−
∫ x

0

et−xy(t)dt

with initial condition y(0) = 1.

Exercise 6. Consider the initial value problem

y′ = y3, y(0) = 1.

(i) Starting with y0(x) = 1, apply Picard’s method to calculate y1(x) and y2(x).

(ii) Explain why we can expect to have a unique solution to the above initial value problem for x ∈
[−h, h] for some h > 0.

Exercise 7. (Exercise 70.7, Modified.) Consider the initial value problem given by{
y′(x) = f(y(x)),

y(x0) = y0,
(63)

with f(y) = y|y| for y ∈ R.

(i) Show that f is differentiable on R and compute f ′(y) for each y ∈ R.

(ii) Hence, show that f ′(y) is continuous on R.

(iii) Show that f(y) is Lipschitz on [0, 1], but not on R.

(iv) Using your answer in (i), (ii), and Theorem A, deduce the set of points (x0, y0) for which (63) has
a unique solution on some interval |x− x0| ≤ h.
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Answers and Hints/Partial Solutions:

• Answer to Exercise 1:

(i) y(x) = 7
8 cos(3x) +

1
8 cos(x).

(ii) y(x) = 1
4e

3x + 3
4e

−x.

(iii) y(x) = 1
2 (1 + x2).

• Answer to Exercise 2: −2(10−p)
((p−10)2+1) . Use derivative of Laplace transform and translation property.

• Answer to Exercise 3: 1
3e

2x − 1
3e

−x.

• Answer to Exercise 4: See Discussion Supplement 2, Example 5.

• Answer to Exercise 5: See Discussion Supplement 3, Example 2.

• Answer to Exercise 6: (i) y1(x) = 1 + x, y2(x) =
3
4 + (1+x)4

4 .
(ii) f(x, y) = y3 is continuous and differentiable on any closed rectangle containing the point (0, 1).
Hence, Theorem A applies, and we thus have a unique local solution around x = 0.

• Answer to Exercise 7: See Discussion Supplement 4, Example 7.
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6 Discussion 6

Recap: Fourier Series

The main question of interest to ask is if we can write any function f(x) defined on [−π, π) in a trigonometric
series of the form

f(x) =
1

2
a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx)). (64)

The Fourier coefficients an and bn for the series in (64) are given by

an =
1

π

∫ π

−π

cos(nx)f(x) for n ≥ 0 ,

bn =
1

π

∫ π

−π

sin(nx)f(x) for n ≥ 1 .

(65)

Dirichlet Theorem, Periodic Extension, and Fourier Sine/Cosine Series.

The Dirichlet Theorem talks about the convergence of a Fourier series defined on [−π, π) below:

Theorem 21. Assume that f(x) is defined and bounded on x ∈ [−π, π), and also that it has only a finite
number of discontinuities and only a finite number of maxima and minima on this interval. Let f(x) be
defined for other values of x by the periodicity condition f(x + 2π) = f(x). Then, the Fourier series of
f(x) converges to

1

2

(
f(x−) + f(x+)

)
(66)

at every point x.

Some remarks on this include:

• In particular, if the function was already continuous at a given point x0, then the Fourier series converges
to

1

2
(f(x−) + f(x+)) =

1

2
(f(x0) + f(x0)) = f(x0).

In other words, the Fourier series converges to the value of the function that it represents at points of
continuity of the function.

• On the other hand, if the function is not continuous at x0, then the Fourier series converges to the value
described in (66). Hence, if we redefine the function at x0 to take f(x0) = 1

2 (f(x
−) + f(x+)) , then the

Fourier series will converge to this value. In other words, the Fourier series will converge to f(x) at every
point x.

Next, we recall the definition of even and odd functions defined on [−π, π) below.

• A function f(x) is even if for all x,
f(−x) = f(x).

Example: f(x) = x2, cos(x).

• A function f(x) is odd if for all x, we have

f(−x) = −f(x).

Example: f(x) = x3, sin(x).
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Examples of even functions (symmetrical about the y-axis):

y = x2

−2 −1 1 2

−1

1

2

x

y

y = cos(x)
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−2

−1

1

2
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Examples of odd functions:

y = x3

−2 −1 1 2

−1

1

2

x

y

y = sin(x)

−3 −2 −1 1 2 3

−2

−1

1

2

x

y
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Some properties of even and odd functions include:

• If f(x) is even and g(x) is odd, then f(x)g(x) is odd.

• If f(x) is even and g(x) is even, then f(x)g(x) is even.

• If f(x) is odd and g(x) is odd, then f(x)g(x) is even.

• For a > 0 and f(x) is even, we have ∫ a

−a

f(x)dx = 2

∫ a

0

f(x)dx.

• For a > 0 and f(x) is odd, we have ∫ a

−a

f(x)dx = 0.

The last two properties then imply the following properties of a Fourier series of an integrable function f(x)
defined on x ∈ [−π, π):

• If f(x) is even, then its Fourier series only has cosine terms and the coefficients are given by

an =
2

π

∫ π

0

f(x) cos(nx)dx, and bn = 0.

This is known as the Fourier cosine series.

• If f(x) is odd, then its Fourier series only has cosine terms and the coefficients are given by

an = 0, and bn =
2

π

∫ π

0

f(x) sin(nx)dx.

This is known as the Fourier sine series.

On the other hand, for functions f(x) defined on [0, π],

• We can do an even extension8 to [−π, 0], and compute the Fourier series for this new function on [−π, π].
Since the function is now even on [−π, π], we have the Fourier cosine series defined on [−π, π]. This can
then be used to “represent” f(x) on its original interval in which it is defined, that is, [0, π].

• We can do an odd extension9 to [−π, 0], and compute the Fourier series for this new function on [−π, π].
Since the function is now odd on [−π, π], we have the Fourier sine series defined on [−π, π]. This can
then be used to “represent” f(x) on its original interval in which it is defined, that is, [0, π].

8An even extension here means that for x < 0, we define f(x) := f(−x). For instance, if we want to define f(−1), this is defined as
f(−(−1)) = f(1), in which f is defined on. Note that this way of extending guarantees that the new extended function is even, and hence
is called an even extension.

9An even extension here means that for x < 0, we define f(x) := −f(−x). For instance, if we want to define f(−1), this is defined as
−f(−(−1)) = −f(1), in which f is defined on. Note that this way of extending guarantees that the new extended function is odd, and
hence is called an odd extension. It is worth nothing that sometimes, we have to re-define the value of 0 since for an odd function, we
have f(−0) = −f(0) implies 2f(0) = 0 and thus f(0) = 0. This means that the original function must be redefined at f(0) to be 0 for this
to work.
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Example 22. (Exercise 35.4, Modified.)

(i) Show that the sine series of the constant function f(x) = π/4 defined on [0, π] is

π

4
= sin(x) +

sin(3x)

3
+

sin(5x)

5
+ · · · , x ∈ (0, π). (67)

(ii) Compute the cosine series of the same function f(x) = π/4 defined on [0, π].

(iii) Use (67) and plug in x = π
2 to compute the value of the alternating series

∞∑
n=1

(−1)n−1

(2n− 1)
.

(iv) Notice that when we plug in x = π into (67), the right hand side of the equation yields 0+ 0+ 0+
· · · = 0 while the left hand side gives π

4 . Explain the disparity observed above.

(v) Notice that when we plug in x = 0 into (67), the right hand side of the equation yields 0 + 0+ 0+
· · · = 0 while the left hand side gives π

4 . Explain the disparity observed above.

Suggested Solutions:

(i) Recall that to compute the sine series, we do an odd extension of the function. The (Fourier) (sine) series
is then given by

f(x) =

∞∑
n=1

bn sin(nx), with bn =
2

π

∫ π

0

f(x) sin(nx)dx.

Plugging f(x) = π
4 and for n ≥ 1, we get

bn =
2

π

∫ π

0

π

4
sin(nx)dx =

1

2

(
− cos(nx)

n

)x=π

x=0

=
1

2n
(cos(0)− cos(nπ)) .

Recall that cos(0) = 1, and cos(nπ) = (−1)n. Hence, we have

bn =
1− (−1)n

2n
=

{
1
n if n is odd,
0 if n is even.

This then gives the series above in (67). In other words, we have

π

4
=
∑
odd n

sin(nx)

n
=

∞∑
n=1

sin((2n− 1)x)

2n− 1
. (68)

(ii) Recall that to compute the cosine series, we do an even extension of the function. The (Fourier) (cosine)
series is then given by

f(x) =
a0
2

+

∞∑
n=1

an cos(nx), with an =
2

π

∫ π

0

f(x) cos(nx)dx.

Plugging f(x) = π
4 , we get a0 = 2

π

∫ π

0
π
4 dx = π

2 and for n ≥ 1,

an =
2

π

∫ π

0

π

4
cos(nx)dx =

1

2

(
− sin(nx)

n

)x=π

x=0

= 0

since sin(nπ) = 0 for integer values of n. Hence, the (Fourier) (cosine) series is (unsurprisingly)

π

4
=
π

4
+

∞∑
n=1

0 cos(nx).

This is unsurprising given the fact that the function π
4 remains unchanged upon an even extension, and it

is one of the “basis” functions for a (full) Fourier series.
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(iii) Plugging x = π
2 into (68) and using the fact that sin

((
n− 1

2

)
π
)
= (−1)n−1, (67) then follows.

(iv) Recall that in the process of obtaining (66), we did an odd extension up to [−π, π). The function is then
re-defined periodically using f(x) = f(x+ 2π). This implies that

f(π−) =
π

4

since we are using the function defined on [−π, π), which is not obtained from periodic extension. On
the other hand, to evaluate f(π+), we need the function value on [π, 3π), which is defined by periodic
extension. Hence, we have

f(π+) = f(−π−)
odd extension

= −f(π−) = −π
4
.

Hence, by Dirichlet theorem. the Fourier (sine) series converges to

1

2

(
f(π−) + f(π+)

)
=

1

2

(π
4
− π

4

)
= 0,

which is consistent with what is evaluated with the Fourier (sine) series at x = π.

(v) This is because upon odd extension, the function should really be

f(x) =


π
4 for x ∈ (0, π],

0 for x = 0,

−π
4 for x ∈ [−π, 0).

Since f is discontinuous at x = 0, Dirichlet theorem says that the Fourier series will converge to

1

2

(
f(0−) + f(0+)

)
=

1

2

(
−π
4
+
π

4

)
= 0,

which is consistent with what is evaluated with the Fourier (sine) series at x = 0.

−6 −4 −2 2 4 6

−1

1

x

y

The red curve represents the Fourier series sin(x) + sin(3x)
3 + sin(5x)

5 + sin(7x)
7 , while the blue curve represents

the odd extension of f(x), followed by a periodic extension. Observe the points in which the Fourier sine series
converges too, especially at the points of discontinuity (and see Dirichlet theorem in action!).
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7 Discussion 7

Recap: Fourier Series

The main question of interest to ask is if we can write any function f(x) defined on [−π, π) in a trigonometric
series of the form

f(x) =
1

2
a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx)) . (69)

The Fourier coefficients an and bn for the series in (69) are given by

an =
1

π

∫ π

−π

cos(nx)f(x) for n ≥ 0,

bn =
1

π

∫ π

−π

sin(nx)f(x) for n ≥ 1.

(70)

Furthermore, we recall the Dirichlet Theorem which talks about the convergence of a Fourier series defined on
[−π, π) below:

“For sufficiently nice functions” f(x) defined periodically, the Fourier series of f(x) converges to 1
2 (f(x

−) + f(x+))
at every point x.

Extension to Arbitrary Intervals.

Suppose instead that f(x) is defined on x ∈ [−L,L). We want to introduce a new variable t such that t ∈ [−π, π).
To do so, observe the scaling:

t

π
=
x

L

which implies that x = Lt
π and hence for each t ∈ [−π, π), we have

g(t) := f

(
Lt

π

)
= f(x). (71)

Expanding g(t) in the usual Fourier series, we have

g(t) =
1

2
a0 +

∞∑
n=1

(an cos(nt) + bn sin(nt))

with Fourier coefficients given in (70). Substituting t = πx
L back, we then have

f(x) =
1

2
a0 +

∞∑
n=1

(
an cos

(nπx
L

)
+ bn sin

(nπx
L

))
. (72)

with (70) turning into

an =
1

L

∫ L

−L

cos
(nπx
L

)
f(x) for n ≥ 0 ,

bn =
1

L

∫ L

−L

sin
(nπx
L

)
f(x) for n ≥ 1 .

(73)

Note: The Fourier coefficients computed for g(t) will not change when you convert the series back to f(x)! In
fact, formulas (70) and (73) are equivalent by a change of variable!

Recommendation: Either use the formulas (72) and (73) directly or re-derive this. Do refer to the lecture notes
and the textbooks on multiple examples of such computations.
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Example 23. Find the Fourier series of f(x) = x defined on [−1, 1]. Is this series valid for every x ∈
[−1, 1]? Explain your answer.

Suggested Solutions: Since x runs from −1 to 1, we define a t to run from −π to π correspondingly by

x

1
=
t

π
.

Recall in (71), we have

g(t) = f

(
t

π

)
=

1

π
t.

Hence, it suffices to compute the Fourier series of the “transformed” g above. By the formulas (70), we have

an =
1

π

∫ π

−π

g(t) cos(nt)dt = 0

since g(t) cos(nt) is an odd function (g(t) is odd while cos(nt) is even). Furthermore, we have

bn =
1

π

∫ π

−π

g(t) sin(nt)dt =
2

π

∫ π

0

t

π
sin(nt)dt =

2

π2

((
− t cos(nt)

n

)t=π

t=0

+
1

n

∫ π

0

cos(nt)dt

)

=
2

π2

(
−π cos(nπ)

n
+

1

n

sin(nt)

n
|t=π
t=0

)
=

2

nπ
(−1)n+1.

In the above computations, we have performed integration by parts and used the fact that cos(nπ) = (−1)n and
sin(nπ) = 0 for all non-negative integers n. Henceforth, the Fourier series for g(t) is given by

g(t) =

∞∑
n=1

2(−1)n+1

nπ
sin(nt).

Thus, the Fourier series for f(x) (after substituting t = πx back) is given by

f(x) =

∞∑
n=1

2(−1)n+1

nπ
sin(nπx). (74)

Note that the above series is valid for x ∈ (−1, 1). At the boundary points, i.e x = −1, since

f(−1−) =︸︷︷︸
periodicity

f(1+) = 1 ̸= −1 = f(−1+),

Dirichlet theorem tells us that the Fourier series will converge to 1
2 (1 − 1) = 0, rather than the function value

which is −1 at x = −1. A similar argument tells us that at x = 1, the Fourier series also converges to 0, which
is not equals to the value of the function at x = 1 (which should be 1). Hence, the Fourier series of f(x) in (74)
is only valid for x ∈ (−1, 1) (and not at the boundary points).
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Orthogonality and Inner Products for Integrable Functions.

A sequence of functions fn(x) for n = 1, 2, · · · , is said to be orthogonal on the interval [a, b] if∫ b

a

fn(x)fm(x)dx

{
= 0 for m ̸= n,

̸= 0 for m = n.

A sequence of functions fn(x) for n = 1, 2, · · · , is said to be orthonormal on the interval [a, b] if∫ b

a

fn(x)fm(x)dx

{
= 0 for m ̸= n,

= 1 for m = n.

Example: 1, cos(x), sin(x), cos(2x), · · · is an orthogonal sequence, while 1√
2π
, cos(x)√

π
, sin(x)√

π
, cos(2x)√

π
, · · · is an or-

thonormal sequence on [−π, π]. To determine the scaling factor in front of say 1, suppose that we have f(x) =
A · 1 for some constant A to be determined. Recall that orthonormal implies

∫ π

−π
fn(x)

2dx =
∫ π

−π
A2dx = 1.

This implies that 2πA2 = 1 and hence A = 1√
2π

. This explains why the first term of the orthonormal sequence
is given by 1√

2π
.

Let X be the space of some functions. X can be equipped with an inner product (·, ·) satisfying the following
properties for any c1, c2 ∈ R and functions f, g ∈ X:

• Linearity: (c1f1 + c2f2, g) = c1(f1, g) + c2(f2, g).

• Symmetric: (f, g) = (g, f).

• Positivity: (f, f) ≥ 0 and [(f, f) = 0 =⇒ f = 0].

Furthermore, we can define

• Length of a function (abstractly known as “norm”) ∥ · ∥, as ∥f∥ =
√
(f, f) for each f ∈ X.

• Distance between two functions (abstractly known as a “metric”) d(·, ·), as d(f, g) = ∥f − g∥ for each
f, g ∈ X.

In addition, the inner product satisfies the following properties for each f, g ∈ X:

• Cauchy-Schwarz: |(f, g)| ≤ ∥f∥∥g∥.

• Triangle Inequality: ∥f + g∥ ≤ ∥f∥+ ∥g∥.

• Pythagorean Theorem: (To be proven in HW 6, Exercise 37.5.) ∥f − g∥2 = ∥f∥2 + ∥g∥2 if and only if f
and g are orthogonal.

Example: Let X = R, the space of integrable functions on [a, b] with a < b.10 We equip R with the inner product

(f, g) =

∫ b

a

f(x)g(x)dx for each f, g ∈ R.

One can check that the above three properties for an inner product holds. Furthermore, the norm (“length”) of
an element in R has the expression

∥f∥ =
√
(f, f) =

√∫ b

a

f(x)2dx.

For instance, if we are considering the interval [−π, π], we have

(1, sin(x)) =

∫ π

−π

sin(x)dx = 0,

implying that 1 is orthogonal to sin(x). Furthermore,

∥1∥2 = (1, 1) =

∫ π

−π

1dx = 2π.

10We say that f ∈ R if f is integrable.
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Hence, the “length” of the constant function 1 is given by ∥1∥ =
√
2π. Recall that in the standard Euclidean

Rn case, to produce an orthonormal sequence from an orthogonal sequence, one just has to divide each vector
by its length. This is precisely what we have done in the previous example to obtain 1√

2π
= 1

∥1∥ as one of the
elements in the sequence of orthonormal functions.

Furthermore, we can compute the distance between two functions as follows. Observe that

d(1, sin(x))2 = ∥1− sin(x)∥2 =

∫ π

−π

(1− sin(x))2dx =

∫ π

−π

1− 2 sin(x) + sin2(x)dx

= 2π − 2 · 0 + π = 3π.

Above, we use the fact that sin(x) is an odd function on [−π, π], and
∫ π

−π
sin2(x)dx =

∫ π

−π
1−cos(2x)

2 dx = π.
Observe that

∥ sin(x)∥2 = (sin(x), sin(x)) =

∫ π

−π

sin2(x)dx = π

and as computed above,
∥1∥2 = 2π.

By Pythagoras theorem, since 1 and sin(x) are orthogonal, we should have

∥1∥2 + ∥ sin(x)∥2 = ∥1− sin(x)∥2

which is indeed as expected since 2π + π = 3π.

Types of Convergence and Mean Squared Convergence of Fourier Series.

Let pn(x) be a sequence of functions attempting to approximate f(x), for with both are defined on [a, b]. We
define the mean squared error at each iteration n as

En = ∥f − pn∥2 =

∫ b

a

(f(x)− pn(x))
2dx.

We say that pn(x) converges to f(x):

• Pointwise if for each x ∈ [a, b], limn→∞ pn(x) = f(x).

• Converges in the mean if limn→∞ d(pn, f)
2 = limn→∞ ∥pn − f∥2 = limn→En = 0.

For the remaining parts of this section, we consider an arbitrary orthonormal sequence of integrable functions
on [a, b], given by ϕ1(x), ϕ2(x), · · · . The goal here is to investigate if the generalized Fourier series

c1ϕ1(x) + c2ϕ2(x) + · · · (75)

“converges” (i.e pointwise vs in the mean) to f(x), with (generalized) Fourier coefficients given by

ck =

∫ b

a

f(x)ϕk(x)dx. (76)

The following theorems below will attempt to answer this as follows:

• Theorem 1. For each positive integer n, the n-th partial sum of the Fourier series of f , namely

n∑
k=1

ckϕk(x) = c1ϕ1(x) + · · ·+ cnϕn(x)

with ck as the (generalized) Fourier coefficients in (76) gives a smaller mean squared error En = ∥f−pn∥2
than any other linear combinations pn(x) = d1ϕ1(x)+ · · ·+ dnϕn(x). Furthermore, this minimum value is
given by

minEn =

∫ b

a

f(x)2dx−
n∑

k=1

c2k.
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• Theorem 2. (Bessel’s Inequality.) If the numbers ck in (76) are the Fourier coefficients of f with respect
to the orthonormal basis {ϕn}, then the series

∑∞
k=1 c

2
k converges and satisfies the Bessel’s inequality:11

∞∑
n=1

c2k ≤
∫ b

a

[f(x)]2dx. (77)

• Theorem 3. The Fourier coefficients ck in (76) of f with respect to the orthonormal basis {ϕn} obeys
cn → 0 as n→ ∞.12

• Theorem 4. The representation of f by its (generalized) Fourier series, namely

f(x) = c1ϕ1(x) + · · ·+ ckϕk(x) + · · ·

is valid in the sense of mean convergence13 if and only if Bessel’s inequality in (77) becomes Parseval’s
equation:

∞∑
n=1

c2k =

∫ b

a

[f(x)]2dx. (78)

• Theorem 5. (Conclusion: Convergence in the mean of ordinary Fourier Series.) If f(x) is any function
defined and integrable on [−π, π], then f(x) is represented by its ordinary Fourier series in the sense of
mean convergence,

f(x) =
1

2
a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx)) ,

where the an and bn are ordinary Fourier coefficients of f(x) in (70).

In particular, the Bessel’s inequality and Parseval’s equation in (77) and (78) can be applied to our ordinary
Fourier series with coefficients in (70) to give

• (Bessel’s Inequality.)
1

2
a20 +

∞∑
n=1

(a2n + b2n) ≤
1

π

∫ π

−π

f(x)2dx. (79)

• (Parseval’s Equation.)
1

2
a20 +

∞∑
n=1

(a2n + b2n) =
1

π

∫ π

−π

f(x)2dx. (80)

Note that the Parseval’s equation for our ordinary Fourier series can be derived directly (without looking at the
generalized Fourier series and instantiating with our ordinary Fourier series), and we shall do so in one of the
exercises that follows.

11The proof of this follows from Theorem 1, since En = ∥f − pn∥2 ≥ 0, then so is the minimum. This implies that
∫ b
a f(x)2dx −∑n

k=1 a
2
k ≥ 0. We can then rearrange to obtain this theorem. For the convergence of the series, this requires some Math 131A so we shall

skip it.
12This is a fact from Math 131A in which if a series converges, then the n-th term must go to 0 as n → ∞. In this case, by Theorem 2,

c2n → 0 and we must then have cn → 0.
13Convergence in the mean implies that En → 0. For our generalized Fourier series, En =

∫ b
a f(x)2dx −

∑n
k=1 c

2
k precisely since it is

the minimizing series. Thus, for En → 0, this is equivalent to the Parseval’s equation.
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Example 24. (Problem 37.1, Modified.) The goal of this problem is to prove the Bessel’s inequality
directly for the ordinary Fourier series. It says that for any integrable function on [−π, π], its ordinary
Fourier coefficients in (70) satisfy the inequalitya

1

2
a20 +

∞∑
k=1

(a2k + b2k) ≤
1

π

∫ π

−π

(f(x))2dx =
1

π
(f, f). (81)

(i) For n ≥ 1, define

sn(x) =
1

2
a0 +

n∑
k=1

(ak cos(kx) + bk sin(kx)).

Show that
1

π
(f, sn) =

1

2
a20 +

n∑
k=1

(a2k + b2k).

(ii) By considering all possible products in the multiplication of sn(x) by itself, show that

1

π
∥sn∥2 =

1

2
a20 +

n∑
k=1

(a2k + b2k).

(iii) By writing
1

π
∥f − sn∥2 =

1

π
(f − sn, f − sn)

=
1

π
((f, f)− (f, sn)− (sn, f) + (sn, sn))

=
1

π

(
∥f∥2 − 2(f, sn) + ∥sn∥2

)
,

deduce that (81) holds.
aThe inner product here is the standard inner product on the space of integrable functions on [−π, π].

Suggested Solution:

(i) Observe that
1

π
(f, sn) =

1

π

(
f,

1

2
a0 +

n∑
k=1

(ak cos(kx) + bk sin(kx))

)

=

(
1

2
a0

(f, 1)

π
+

n∑
k=1

(
ak

(f, cos(kx))

π
+ bk

(f, sin(kx))

π

))
.

(82)

Observe that by (70) (formula for the ordinary Fourier coefficients)

1

π
(f, 1) =

1

π

∫ π

−π

f(x)dx = a0,

1

π
(f, cos(kx)) =

1

π

∫ π

−π

f(x) cos(kx)dx = ak, and

1

π
(f, sin(kx)) =

1

π

∫ π

−π

f(x) sin(kx)dx = bk.

for k ≥ 1. Then, (82) simplifies to

1

π
(f, sn) =

1

2
a20 +

n∑
k=1

(
a2k + b2k

)
. (83)
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(ii) Similar to (i), observe that

1

π
(sn, sn)

=
1

π

(
1

2
a0 +

n∑
l=1

(al cos(lx) + bl sin(lx)),
1

2
a0 +

n∑
k=1

(ak cos(kx) + bk sin(kx))

)

=
a20
4

(1, 1)

π
+

1

2

n∑
l=1

(
al
(cos(lx), 1)

π
+ bl

(sin(lx), 1)

π

)
+

1

2

n∑
k=1

(
ak

(1, cos(kx))

π
+ bk

(1, sin(kx))

π

)

+

n∑
l,k=1

alak
(cos(lx), cos(kx))

π
+ albk

(cos(lx), sin(kx))

π
+ blak

(sin(lx), cos(kx))

π
+ blbk

(sin(lx), sin(kx))

π
.

(84)
By orthogonality, we have (cos(lx), 1) = (sin(lx), 1) = (1, cos(kx)) = (1, sin(kx)) = 0 for all l, k ≥ 1, and
(cos(lx), sin(kx)) = (sin(lx), cos(kx)) = 0 too. Furthermore, we also have

(cos(lx), cos(kx))

π
=

{
0 if l ̸= k,

1 if l = k,

and
(sin(lx), sin(kx))

π
=

{
0 if l ̸= k,

1 if l = k,

In addition, we have (1, 1) =
∫ π

−π
dx = 2π, so (1,1)

π = 2. Thus, the only colored term that survives would be
in green, and for l = k. Hence, in (84), we are only summing over l = k = 1 up to n in those summations,
which then yields

1

π
(sn, sn)

=
a20
2

+

n∑
l=k=1

alak +

n∑
l=k=1

blbk

=
a20
2

+

n∑
k=1

(a2k + b2k).

(85)

(iii) The expansion in the question tells us that

1

π
∥f − sn∥2 =

1

π
(∥f∥2 − 2(f, sn) + ∥sn∥2).

Observe that from (i) and (ii) that since 1
π (f, sn) =

1
π∥sn∥

2, we have

1

π

(
−2(f, sn) + ∥sn∥2

)
= − (f, sn)

π
= −1

2
a20 +

n∑
k=1

(
a2k + b2k

)
.

Furthermore, since 1
π∥f − sn∥2 ≥ 0, we have

0 ≤ 1

π
∥f − sn∥2 =

1

π
(∥f∥2−2(f, sn) + ∥sn∥2) =

1

π
∥f∥2 −

(
1

2
a20 +

n∑
k=1

(
a2k + b2k

))
.

Since 0 ≤ RHS, rearranging the term gives the Bessel’s inequality in (81).
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Example 25. (An Exercise on Pointwise and Mean Squared Convergence.) Let pn(x) = xn defined on
[0, 1] and

f(x) =

{
0 if x ∈ [0, 1),

1 if x = 1.

(i) Show that pn(x) → f(x) pointwise.

(ii) Show that pn(x) → f(x) in the mean (ie mean squared convergence).

Suggested Solution: Here is the picture for f(x) and pn(x) for n = 1, 2, 4, 7, 11, 16, 22, 29, 37, 46. The curves in a
mixture of black and green corresponds to pn(x), while the curve in blue corresponds to the function f(x). In
the diagram below, as n increases, the graph of pn(x) gets “greener” and less dark.

−0.2 0.2 0.4 0.6 0.8 1 1.2

0.5

1

x

y

From the picture above, with the exception of the point (1, 1) which remains unchanged, at each reference point
x ∈ [0, 1), the sequence pn(x) converges to 0. Furthermore, it also seems that the “difference in area squared” (a
good proxy for mean squared convergence) converges to 0. With that, we shall prove these properties rigorously
below.

(i) To show pointwise convergence on [0, 1], we have to show that for each point x ∈ [0, 1], limn→∞ pn(x) =
f(x).

At x = 1, we see that pn(1) = 1 for all n ≥ 1 and f(1) = 1. Hence, it is easy to see that limn→∞ pn(1) =
limn→∞ 1 = 1 = f(1).

At x ∈ [0, 1), we see that pn(x) = xn for all n ≥ 1, while f(x) = 0. Since limn→∞ xn = 0 for any x ∈ [0, 1),
then we have limn→∞ pn(x) = f(x) for any x ∈ [0, 1).

(ii) To show convergence in mean, recall by definition that we have to show that En = ∥pn−f∥2 → 0. Hence,
it makes sense for us to compute En for each n ≥ 1. Observe that

En = ∥pn − f∥2 =

∫ 1

0

(pn(x)− f(x))2dx =

∫ 1

0

(xn − 0)2dx =

∫ 1

0

x2ndx =
x2n+1

2n+ 1
|x=1
x=0 =

1

2n+ 1
.

Note that we set f(x) = 0 in the integral above since changing the value of a function at an isolated point
will not change the value of the integral, and f(x) is just one point away from the zero function.

Hence, we have limn→∞En = limn→∞
1

2n+1 = 0. Thus, we have that pn(x) → f(x) in the mean.
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Example 26. (Problem 38.7 Modified.) Let f(x) = x on x ∈ [0, π]. One can compute the Fourier sine
series (as a practice, do verify this on your own!) to show that

x = 2

(
sin(x)− sin(2x)

2
+

sin(3x)

3
− · · ·

)
. (86)

By using the Parseval’s equation in (80), show that

∞∑
n=1

1

n2
=
π2

6
.

Suggested Solution: From the expression above, the (ordinary) Fourier coefficients are given by

an = 0 ∀n ≥ 0, and bn =
2(−1)n

n
∀n ≥ 1.

By Parseval’s equation, we have

∞∑
n=1

(
2(−1)n

n

)2

=
1

π

∫ π

−π

fodd(x)
2dx =

1

π

∫ π

−π

f(x)2dx =
1

π

∫ π

−π

x2dx,

where fodd(x) is the odd extension of f(x) (which happens to be itself) since the function f was only defined
on [0, π] and had to be extended for us to compute the Fourier sine series above.

The series on the left simplifies to
∑∞

n=1
4
n2 , while the integral on the right yields 1

π
x3

3 |π−π = 2π2

3 . We then have

∞∑
n=1

4

n2
=

2π2

3
,

which then simplifies to the required expression.
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8 Discussion 8

Partial Differential Equations (PDEs) and Boundary Value Problems.

Consider an ODE of the form
Dy + λy = 0, y(0) = 0, y(π) = 0,

where D is a differential operator. The non-zero solutions to the ODE above are known as eigenfunctions
yn(x) of the ODE, with the corresponding λn as the eigenvalues of the associated differential operator D. The
following is an example on how one can compute the eigenvalues and the eigenfunctions associated with an
ODE with prescribed boundary conditions.

Example 27. Find all values of λ > 0 such that

X ′′(x) = −λX(x) for x ∈ (0, 1), X(0) = X(1) = 0, (87)

admits a non-zero solution on x ∈ [0, 1].

Suggested Solution: Recall from 33B that the general solution is given by

X(x) = A cos(
√
λx) +B sin(

√
λx). (88)

Using X(0) = 0, we have A = 0. We then have

X(x) = B sin(
√
λx). (89)

Next, using X(1) = 0, we have
B sin(

√
λ) = 0. (90)

Thus, it is possible to have B ̸= 0 if sin(
√
λ) = 0. This implies that we have14

√
λ = nπ, n ∈ Z
λ = n2π2, n ∈ N \ {0}

(91)

Thus, the possible values of λ such that we have a non-zero solution on [0, 1] are

λ = n2π2, n ∈ N \ {0} . (92)

14N for me includes 0.



Fall 23 MATH135 Discussion Supplements 52

We shall now proceed to attempt to solve a PDE by separation of variables. The exact details will be included in
an example below. For instance, for the wave equation with speed c is given by

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) in (0, π)× (0,∞),

u(0, t) = 0 on {x = 0} × [0,∞),

u(π, t) = 0 on {x = π} × [0,∞),

u(x, 0) = f(x) on [0, π]× {t = 0},
∂u

∂t
(x, 0) = 0 on [0, π]× {t = 0},

this was solved in class for any general f(x) that is sufficiently nice. Here, we say that u(0, t) = u(π, t) = 0 refers
to the Dirichlet boundary conditions, with initial conditions u(x, 0) = f(x), ∂u∂t (x, 0) = 0. The solution is given
by

u(x, t) =

∞∑
n=1

bn sin(nx) cos(nct)

with

bn =
2

π

∫ π

−π

f(x) sin(nx)dx.

In general, it is not recommended that you memorize the solution for all possible PDEs with various bound-
ary conditions and initial conditions, and you should attempt to derive them by separation of variables. In
the following example, we shall deal with the same wave equation with a more general initial condition and
the Neumann boundary conditions (different boundary conditions) to illustrate how one can solve a PDE by
separation of variables as follows.



Fall 23 MATH135 Discussion Supplements 53

Example 28. Consider the wave equation with Neumann boundary conditions on a bounded region
[0, L] for a given L > 0 with c = 1 and general initial conditions for some sufficiently well-behaved
functions ϕ and ψ. 

∂2u

∂t2
(x, t) =

∂2u

∂x2
(x, t) in (0, L)× (0,∞),

∂u

∂x
(0, t) = 0 on {x = 0} × [0,∞),

∂u

∂x
(L, t) = 0 on {x = L} × [0,∞),

u(x, 0) = ϕ(x) on [0, L]× {t = 0},
∂u

∂t
(x, 0) = ψ(x) on [0, L]× {t = 0}.

(93)

Solve this by separation of variables.

Suggested Solution:

Step 1: Look for separable solutions and derive boundary conditions.
Here, we look for non-trivial solutions15 of the form

u(x, t) = X(x)T (t)

(ie separable). Using the Neumann boundary conditions, this implies that

∂u

∂x
(0, t) = X ′(0)T (t) = 0, and

∂u

∂x
(L, t) = X ′(L)T (t) = 0. (94)

From the first equation, either X ′(0) = 0 or T (t) = 0 for all t ≥ 0. However, the latter implies that u(x, t) =
X(x)T (t) = 0 since T is now the zero function, and we obtain a trivial (zero) “solution” (it might not even
satisfy the initial conditions!) to the above PDE. Similarly, one deduces that X ′(L) = 0. In summary,

X ′(0) = X ′(L) = 0. (95)

Plugging this into the PDE, we get

∂2u

∂t2
(x, t) = X(x)T ′′(t)

∂2u

∂x2
(x, t) = X ′′(x)T (t)

∂2u

∂t2
(x, t)− ∂2u

∂x2
(x, t) = X(x)T ′′(t)−X ′′(x)T (t) = 0.

(96)

Dividing both sides of the equation by X(x)T (t),16 we obtain

X ′′(x)

X(x)
=
T ′′(t)

T (t)
(97)

Since the LHS of (97) only depends on x, and the RHS of (97) only depends on t, then (97) is equals to a
constant. One way to understand this is that if x varies while keeping t fixed, it does not change the value on
the right. This implies that it must be a constant in x for any given t. Using a similar argument, we then have

15“Is zero a solution” can be easily checked by substituting it into the PDE such that it satisfies the initial condition. Thus, it makes sense
to just search for non-zero solutions.

16We did not discuss about the possibility of X and T being 0 at a point. Most books, not even Strauss, discuss this. The most convincing
argument I have for you (at least, I am convinced) is that we use the argument in (98) as an intuition, and then come back to (97) and
postulate that X(x) are solutions to the eigenvalue problem X′′(x) = −λX(x) for λ independent of x and t. Note that philosophically,
this makes sense because when we write an ansatz/guess to the PDE, we are already restricting the functions that we are looking for to a
smaller space. If it ends up not working, then it implies that either the restriction is too restrictive (say you have an ansatz u(x, t) = 1) or
there really is no solution. Substitute this into (96), we obtain X(x)T ′′(t) = −λT (t)X(x). Since this holds for all x and t, we pick a point
x∗ such that X(x∗) ̸= 0, and then divide by X(x∗) on both sides to obtain T ′′(t) = −λT (t). If such a point does not exists, this implies
that X(x) = 0 for all x, and thus u(x, t) = X(x)T (t), the trivial solution.
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that it is a constant in t for any given x.17 Thus, (97) becomes

−X
′′(x)

X(x)
= −T

′′(t)

T (t)
= λ (98)

where λ is a constant. In fact, this constant must be a non-negative real constant18, since λ here is viewed as
the eigenvalue to the problem −X ′′(x) = λX(x) with boundary terms X ′(0) = X ′(L) = 0.

Step 2: Solve the corresponding eigenvalue problem in X.
Now, we would like to solve the eigenvalue problem{

−X ′′(x) = λX(x)

X ′(0) = X ′(L) = 0
(99)

to obtain the corresponding eigenvalues and more importantly, eigenfunctions. If λ = 0, then X(x) = Ax+ B.
Using X ′(0) = X ′(L) = 0, we can only determine that A = 0. Thus, X(x) = B, an arbitrary constant, is an
eigenfunction. In particular, the function 1 is an eigenfunction.

For λ > 0, The general solution is given by

X(x) = A sin(
√
λx) +B cos(

√
λx)

X ′(x) = A
√
λ cos(

√
λx) +B

√
λ sin(

√
λx).

(100)

Using X ′(0) = 0, this implies that A
√
λ = 0. Since λ > 0, this implies that A = 0. With X ′(x) = B

√
λ sin(

√
λx)

left, we use the condition X ′(L) = 0 to obtain

X ′(L) = B
√
λ sin(

√
λL) = 0. (101)

Note that it is now possible for this expression to be 0 with B ̸= 0. This happens when sin(
√
λL) = 0, or when√

λL = nπ for n ∈ N \ {0}, or

λn =
n2π2

L2
, n ∈ N \ {0}. (102)

The corresponding eigenfunctions (the functions attached to B in X(x) since B ̸= 0, and combining with the
case when λ > 0) are

Xn(x) = cos(
√
λnL) = cos

(nπx
L

)
, n ∈ N, (103)

since these functions will satisfy the boundary conditions but are non-zero functions.

Step 3: Solve the corresponding ODE in T .19

Going back to (98), this implies that there are only countably finitely many λ (given by λn above) that gives a
non-zero solution. Thus, for each n ∈ N, we will be solving the ODE:

−T ′′
n (t) = λnTn(t), (104)

where we index the function T (t) by n to imply that we are solving a different ODE for different n (due to
different values of λn). Since λn ≥ 0, for λ = 0 (ie at n = 0), we obtain20

T0(t) =
A0

2
t+

B0

2
. (105)

Recall that for each n, we are solving a different ODE, so the arbitrary constants are different, and thus are
indexed by n.
For λn > 0 (ie for n ≥ 1), we obtain

Tn(t) = An sin(
√
λnt) +Bn cos(

√
λnt)

= An sin

(
nπt

L

)
+Bn cos

(
nπt

L

)
.

(106)

17If you don’t buy this argument, take λ(x, t) =
X′′(x)
X(x)

=
T ′′(t)
T (t)

. Note that ∂
∂x

λ(x, t) = 0 since ∂
∂x

λ(x, t) = ∂
∂x

T ′′(t)
T (t)

= 0 is

independent of t. Similarly, ∂
∂t

λ(x, t) = ∂
∂t

X′′(t)
X(t)

= 0. Thus, λx = λt = 0 implies that λ is a constant.
18You can argue this rigorously by computing the eigenvalues as in Example 27.
20The purpose of writing it as B0

2
will be clear in a bit.
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Step 4: Obtain general solution by linearity.

By linearity, for each n, the solution un(x, t) = Xn(x)Tn(t) is a solution. Thus, a linear combination of these
un(x, t) is also a solution. This implies that21

u(x, t) =
∑
n∈N

un(x, t)

=
∑
n∈N

Xn(x)Tn(t)

= (1)

(
A0

2
t+

B0

2

)
+

∑
n∈N,n≥1

cos
(nπx
L

)(
An sin

(
nπt

L

)
+Bn cos

(
nπt

L

))
.

(107)

Step 5: Solve for the Fourier coefficients.
First, see that (since sin(0) = 0, cos(0) = 1),

ϕ(x) = u(x, 0) =
B0

2
+

∞∑
n=1

Bn cos
(nπx
L

)
=

∞∑
n=0

Bn cos
(nπx
L

)
. (108)

Thus, the Bn are coefficients of the Fourier cosine series on the domain [0, L]. Using the formula in Discussion
7, we obtain

Bn =
2

L

∫ L

0

cos
(nπx
L

)
ϕ(x) dx, n ≥ 0, (109)

Next, take ∂
∂t to obtain

∂u

∂t
(x, t) =

A0

2
+

∑
n∈N,n≥1

cos
(nπx
L

)(Annπ

L
cos

(
nπt

L

)
+

−Bnnπ

L
sin

(
nπt

L

))

ψ(x) =
∂u

∂t
(x, 0) =

A0

2
+

∞∑
n=1

Annπ

L︸ ︷︷ ︸
Cn

cos
(nπx
L

)
.

(110)

Let C0 = A0 and Cn = Annπ
L , we then obtain the Fourier cosine series again (in Cn). Using the expression for

Fourier series on an arbitrary domain, we get

Cn =
2

L

∫ L

0

cos
(nπx
L

)
ψ(x) dx, n ≥ 0, (111)

so the An’s are given by

An =
L

nπ
Cn =

2

nπ

∫ L

0

cos
(nπx
L

)
ψ(x) dx, n ≥ 0. (112)

Thus, we have

u(x, t) = (1)

(
A0

2
t+

B0

2

)
+

∑
n∈N,n≥1

cos
(nπx
L

)(
An sin

(
nπt

L

)
+Bn cos

(
nπt

L

))
(113)

with coefficients An, Bn for n ∈ N given by (109) and (112).

21We could have written the solution as C0(1)(A0t + B0) +
∑

n∈N,n≥1 Cn cos
(
nπx
L

) (
An sin

(
nπt
L

)
+Bn cos

(
nπt
L

))
with arbitrary

constants Cn in front, but these are absorbed in the An ’s and Bn ’s, so it doesn’t really matter.
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Following the above derivation or the derivation in the textbook/lecture notes, for the Dirichlet problem for the
heat equation for x ∈ [0, π] given by

∂u

∂t
(x, t) = c2

∂2u

∂x2
(x, t) in (0, L)× (0,∞),

u(0, t) = 0 on {x = 0} × [0,∞),

u(π, t) = 0 on {x = L} × [0,∞),

u(x, 0) = f(x) on [0, π]× {t = 0},

we have the following solution:

u(x, t) =

∞∑
n=1

bne
−n2c2t sin(nx)

with

bn =
2

π

∫ π

0

f(x) sin(nx)dx.

As an exercise, do try to derive the above solution on your own using the steps that we did above!

Inhomogeneous Boundary Conditions for Heat Equation.

Recall that in lectures, one might be tasked to solve for u(x, t)

∂u

∂t
(x, t) = c2

∂2u

∂x2
(x, t) in (0, L)× (0,∞),

u(0, t) = C1 on {x = 0} × [0,∞),

u(π, t) = C2 on {x = L} × [0,∞),

u(x, 0) = f(x) on [0, π]× {t = 0},

for some constants A and B. The strategy here is to find the solution to the steady equation (ie ∂u
∂t = 0 and

assume that u does not depend on time t). For instance, if we do so, if we denote this solution as g(x), then we
get

c2g′′ = 0

where ′ here represents a derivative with respect to x. This gives g(x) = Ax + B. Plugging the boundary
conditions g(0) = C1 and g(π) = C2, one can obtain g(x) = C1 +

C2−C1

π x. For the original equation, we now
consider the substitution

u(x, t) = w(x, t) + g(x).

This implies that
∂2u

∂x2
=
∂2w

∂x2
+ g′′ =︸︷︷︸

Since g′′=0

∂2w

∂x2

and
∂u

∂t
=
∂w

∂t
.

Furthermore, the boundary conditions are

w(0, t) = u(0, t) + g(0) = C1 − C1 = 0,

w(π, t) = u(π, t) + g(π) = C2 − C2 = 0,

and
w(x, 0) = u(x, 0) + g(x) = f(x) + g(x).

Hence, the resulting PDE is given by

∂w

∂t
(x, t) = c2

∂2w

∂x2
(x, t) in (0, L)× (0,∞),

w(0, t) = 0 on {x = 0} × [0,∞),

w(π, t) = 0 on {x = L} × [0,∞),

w(x, 0) = f(x) + g(x) on [0, π]× {t = 0}.
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We can now solve the above PDE by separation of variables for w(x, t). The full solution to the original problem
is then given by

u(x, t) = w(x, t) + g(x) = w(x, t) + C1 +
C2 − C1

π
x.

Dirichlet Problem for a Circle and Poisson’s Integral.

In this section, we look at the two-dimensional Laplace equation (and possibly higher dimensions) for an un-
known function u(x, y) given by

∂2u

∂x2
+
∂2u

∂y2
= 0.

One can show that in polar coordinates (r, θ), the equation is given by

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0. (114)

By separation of variables, one can show that the solution with the boundary value u(r = 1, θ) = f(θ) is given
by22

u(r, θ) =
a0
2

+

∞∑
n=1

rn(an cos(nθ) + bn sin(nθ)).

Here, the coefficients an and bn are obtained by letting r = 1 and attempting to express f(θ) in its (full) Fourier
series as follows:

f(θ) = u(1, θ) =
a0
2

+

∞∑
n=1

(an cos(nθ) + bn sin(nθ)).

The above is known as the Dirichlet problem for a circle for the 2D Laplace equation.

In fact, an exact solution to the Laplace equation in polar coordinates in (114) can be derived to be given by

u(r, θ) =
1

2π

∫ π

−π

1− r2

1− 2r cos(θ − ϕ) + r2
f(ϕ)dϕ.

The expression above is known as the Poisson’s Integral.

22Note that this involves solving an equidimensional ODE that we have went through in Supplement 2. You should try to be familiar with
the derivations!
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Some practice problems:

Exercise 8.

(i) Show that the sine series of the constant function f(x) = π/4 defined on [0, π] is

π

4
= sin(x) +

sin(3x)

3
+

sin(5x)

5
+ · · · , x ∈ (0, π). (115)

(ii) Compute the cosine series of the same function f(x) = π/4 defined on [0, π].

(iii) Use (115) and plug in x = π
2 to compute the value of the alternating series

∞∑
n=1

(−1)n−1

(2n− 1)
.

(iv) Notice that when we plug in x = π into (115), the right hand side of the equation yields 0 + 0 +
0 + · · · = 0 while the left hand side gives π

4 . Explain the disparity observed above.

(v) Notice that when we plug in x = 0 into (115), the right hand side of the equation yields 0 + 0 +
0 + · · · = 0 while the left hand side gives π

4 . Explain the disparity observed above.

Exercise 9.

(i) Find the Fourier series of f(x) = x defined on [−1, 1].

(ii) Determine the maximal subset of [−1, 1] such that the Fourier series above is valid.

Exercise 10. Let

f(x) =


1 for 0 ≤ x < π

4 ,

0 for π
4 ≤ x < π

2 ,
4
π

(
3π
4 − x

)
for π

2 ≤ x < 3π
4 ,

0 for 3π
4 ≤ x < π.

Let

pn(x) =
a0
2

+ a1 cos(x) + · · ·+ an cos(nx) =

n∑
k=1

cos(kx)

for x ∈ [0, π]. Let En =
∫ π

0
|f(x)− pn(x)|2dx.

(i) Find the value of a0 that minimizes E0.

(ii) Does pn(x) converges to f(x) in the mean? Briefly explain your answer.

(iii) Without explicitly computing the general expression for an, compute limn→∞ an.

(iv) Without explicitly computing the general expression for an, compute

a20
2

+

∞∑
n=1

a2n.

(v) Find the maximal range of values of x in [0, π] for which pn(x) converges to f(x) pointwise.

(vi) Without explicitly computing the general expression for an, show that

1

8
=

∞∑
n=1

(−1)na2n.

Hint: Consider x = π
2 .
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Exercise 11. Let f(x) = x on x ∈ [0, π].

(i) Show that the Fourier sine series is given by

x = 2

(
sin(x)− sin(2x)

2
+

sin(3x)

3
− · · ·

)
.

(ii) By using the Parseval’s equation, show that

∞∑
n=1

1

n2
=
π2

6
.

Exercise 12. Consider the wave equation for x ∈ [0, π] for c > 0 with boundary and initial conditions
given below: 

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) in (0, π)× (0,∞),

u(0, t) = 0 on {x = 0} × [0,∞),

u(π, t) = 0 on {x = π} × [0,∞),

u(x, 0) = 0 on [0, π]× {t = 0},
∂u

∂t
(x, 0) = f(x) on [0, π]× {t = 0},

Find the general solution to the above equation by separation of variables.

Exercise 13. Recall that in polar coordinates, the 2D Laplace equation is given by

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0

with general solution (obtained by separation of variables) given by

u(r, θ) =
a0
2

+

∞∑
n=1

rn(an cos(nθ) + bn sin(nθ)). (116)

An alternative expression for the solution is given by the Poisson integral, given by

u(r, θ) =
1

2π

∫ π

−π

1− r2

1− 2r cos(θ − ϕ) + r2
f(ϕ)dϕ. (117)

(i) Solve the above problem with the boundary condition u(r = 2, θ) = 4 cos(2θ).

(ii) Use your answer in (i) and (117) to deduce that

1

2π

∫ π

−π

−60 cos(2ϕ)

17− 8 cos(π/2− ϕ)
dϕ = −16.

Answers and Hints/Partial Solutions:

• Answer to Exercise 8: See Supplement 6 Example 2.

• Answer to Exercise 9: See Supplement 7 Example 1.

• Answer to Exercise 10:

(i) By Theorem 1 in Supplement 7 (or the equivalent theorem number in the textbook), this is minimized
if a0 is the Fourier coefficient of the Fourier cosine series used to represent f(x). Hence, we have

a0 =
2

π

∫ π

0

f(x)dx =
2

π

∫ π
4

0

1dx+
2

π

∫ 3π
4

π
2

4

π

(
3π

4
− x

)
dx =

1

2
+

1

4
=

3

4
.
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(ii) By Theorem 5 in Supplement 7, Fourier series converges in the mean to the function that it attempts
to represent.

(iii) By Theorem 3 in Supplement 7, any Fourier series will have its coefficients decaying to zero. This
implies that an → 0.

(iv) By Parseval’s equation, this is equivalent to 1
π

∫ π

−π
feven(x)

2dx = 2
π

∫ π

0
f(x)2dx.. Here, we are looking

at the even extension of f(x) (since we are looking at the Fourier cosine series as suggested by the
form of pn(x)). Since∫ π

0

f(x)2dx =

∫ π
4

0

12dx+

∫ 3π
4

π
2

16

π2

(
3π

4
− x

)2

dx =
π

4
+

π

12
=
π

3
.

Thus, we have
a20
2

+

∞∑
n=1

a2n =
2

π
× π

3
=

2

3
.

(v) Pointwise convergence has been discussed when we were talking about Dirichlet theorem. Hence-
forth, it suffices to look at the points of discontinuity of the even extension of f(x). This is illustrated
in the diagram below, with the blue curve representing f(x), the green curve represents the even
extension of f(x) to [−π, π], and the black curve representing periodic extension of the resulting
function. As we can see, for x ∈ [0, π], the function is only discontinuous at x = π

4 and x = π
2 . Thus,

the Fourier cosine series converges pointwise to f(x) for all x ∈ [0, π]\
{

π
4 ,

π
2

}
= [0, π4 )∪(

π
4 ,

π
2 )∪(

π
2 , π].

(vi) Apply Dirichlet theorem at x = π
2 . Since a0

2 = 3
8 , bring it to the left of the equation to obtain 1

2−
3
8 = 1

8
on the left hand side of the equality. Since cos

(
nπ
2

)
= 0 for odd values of n, and cos

(
2nπ
2

)
= (−1)n+1,

we then have
∞∑

n=1

an cos
(nπ

2

)
=

∞∑
n=1

a2n cos (nπ) =

∞∑
n=1

(−1)na2n.

−π −3π/4−π/2 −π/4 π/4 π/2 3π/4 π

−0.5

0.5

1

1.5

x

y

• Answer to Exercise 11: See Supplement 7 Example 4.

• Answer to Exercise 12:
Let u(x, t) = X(x)T (t). The boundary and initial conditions translate to X(0) = X(π) = T (0) = 0. By
using the PDE, one should arrive at

X ′′

X
=

1

c2
T ′′

T
= −λ.
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Next, solve the eigenvalue problem X ′′ = −λX for X(0) = X(π) = 0 to obtain Xn(x) = sin(nx) for
λn = n2 for n ≥ 0. Plugging these back to obtain the ODE for T as

T ′′
n = −n2c2Tn

with T ′(0) = 0. This gives the general solution to the ODE is given by

Tn(t) = B sin (nct) .

The general solution to the PDE is given by

u(x, t) =

∞∑
n=1

bnXn(x)Tn(t) =

∞∑
n=1

bn sin(nx) sin(nct) .

By substituting ∂u
∂t (x, 0) = f(x), we have

f(x) =
∂u

∂t
(x, 0) =

∞∑
n=1

ncbn sin(nx) cos(nc× 0) =

∞∑
n=1

cnbn︸︷︷︸
cn

sin(nx).

This is just the Fourier sine series of f(x) on [0, π]. Hence, we have cn = 2
π

∫ π

0
f(x) sin(nx)dx and thus

bn =
cn
cn

=
2

cnπ

∫ π

0

f(x) sin(nx)dx .

• Answer to Exercise 13:

(i) Plugging this into (116), we have

4 cos(2θ) = f(θ) =
a0
2

+

∞∑
n=1

2n(an cos(nθ) + bn sin(nθ)).

By orthogonality of the Fourier series, it is easy to see that bn = 0 for all n ≥ 1, an = 0 for all n ≥ 0
except n = 2, and for n = 2, we have 4 cos(2θ) = 22a2 cos(2θ) which implies that a2 = 1. Plugging
these Fourier coefficients back to (116), we have

u(r, θ) = r2 cos(2θ)

as the full solution.

(ii) Using r = 4 and θ = π/2, observe that u(4, π/2) = 16 cos(π) = −16. On the other hand, the LHS of
the expression to show is obtained by substituting r = 4 and θ = π/2 into the expression in (117).
Here, note that the Fourier series for f(θ) converges pointwise at θ = π/2 since f(θ) = 4 cos(2θ) is
continuous for every θ ∈ [−π, π).
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9 Discussion 9

Sturm-Liouville Problems.

Here, we summarize all the key terms and give a brief description on each of these terms:

• The sequence of functions {yn(x)} is orthogonal on [a, b] if∫ b

a

ym(x)yn(x)dx =

{
0 if m ̸= n

αn > 0 if m = n.

• The sequence of functions {ϕn(x)} is orthonormal on [a, b] if∫ b

a

ϕm(x)ϕn(x)dx =

{
0 if m ̸= n

1 if m = n.

Recall that if we set can construct this from an orthogonal sequence by considering the normalization:

ϕn(x) =
yn(x)

∥yn∥
=

yn(x)

(yn, yn)
1
2

.

• The sequence of functions {yn(x)} is orthogonal with respect to the weight function q(x) on [a, b] if∫ b

a

ym(x)yn(x)q(x)dx =

{
0 if m ̸= n

αn > 0 if m = n.

• The sequence of functions {yn(x)} is orthonormal with respect to the weight function q(x) on [a, b] if∫ b

a

ym(x)yn(x)q(x)dx =

{
0 if m ̸= n

1 if m = n.

Consider a differential equation for x ∈ [a, b] of the form

d

dx

(
p(x)

dy

dx

)
+ [λq(x) + r(x)]y = 0. (118)

with the homogeneous boundary conditions{
c1y(a) + c2y

′(a) = 0

d1y(b) + d2y
′(b) = 0

with c1 or c2 ̸= 0, and d1 or d2 ̸= 0, then this is known as a Sturm-Liouville problem.

• Under certain conditions (ie p(x) > 0 and q(x) > 0), there are countably many solutions to the Sturm-
Liouville problem above. For each value of λ, we can find a corresponding solution y that solves (118).
Index λ and y by n (since there are only countably many) with λ1 < λ2 · · · , and we have:

λn : Eigenvalue,
yn(x) : Eigenfunction associated with the eigenvalue above.

By the above definitions, we must have for each n, the eigenvalue λn and eigenfunction yn(x) satisfy

d

dx

(
p(x)

dyn
dx

)
+ [λnq(x) + r(x)]yn = 0.

One can then show that

(λm − λn)

∫ b

a

q(x)ym(x)yn(x)dx = p(b)W (b)− p(a)W (b),

where
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• The Wronskian determinant of two solutions yn(x) and ym(x) is given by

W (x) =

∣∣∣∣ym(x) y′m(x)
yn(x) y′n(x)

∣∣∣∣ = ym(x)y′n(x)− yn(x)y
′
m(x).

By the homogeneous boundary conditions, W (a) =W (b) = 0 (see details in lecture notes/textbook), and hence

(λm − λn)

∫ b

a

q(x)ym(x)yn(x)dx = 0.

Observe that

λm ̸= λn =⇒
∫ b

a

q(x)ym(x)yn(x)dx = 0.

Hence, eigenfunctions corresponding to different eigenvalues are orthogonal with respect to the weight
function q(x).

• For any given function f(x) on [a, b], one can conduct a generalized eigenfunction expansion given by

f(x) =

∞∑
n=1

anyn(x),

with yn(x) as the (orthogonal) eigenfunctions for a Sturm-Liouville problem (with respect to q(x)). Hence,
by multiplying q(x)ym(x) on both sides and integrating from a to b, one can show that

an =
(f, yn)q
(yn, yn)q

are the coefficients of the generalized eigenfunction expansion.23

23Here, we denote (f, g)q =
∫ b
a f(x)g(x)q(x)dx as the generalized inner product.
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Example 29. Consider the following ODE:

y′′(x) + λxy(x) = 0

for x ∈ [0, 1] with boundary conditions y(0) = y(1) = 0. Note that the above ODE has countably many
eigenvalues λn and eigenfunctions yn(x), though the exact solutions might not be easy to compute.

Now, suppose that we would like to compute the eigenfunction expansion of f(x) = x for x ∈ [0, 1] with
respect to the eigenfunctions for the ODE above, given by

f(x) = a1y1(x) + a2y2(x) + · · · .

Write down the general expression of an. If you use the inner product notation (·, ·), you must indicate
the appropriate weight function.

Suggested Solution: This is of the form of a Sturm-Liouville problem, with p(x) ≡ 1, q(x) = x, r(x) = 0 and
homogeneous boundary conditions. Hence, coefficients an are given by

an =
(x, fn)

(fn, fn)
=

∫ 1

0
x2fn(x)dx∫ 1

0
xf2n(x)dx

since here, we have

(f, g) =

∫ 1

0

x︸︷︷︸
q(x)

f(x)g(x)dx,

with x as the weight function (in which we have read it off from q(x) = x).
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Exact Forms, Adjoints, and Self-Adjoint ODEs.

• The differential equation
P (x)y′′ +Q(x)y′ +R(x)y = 0

is exact if and only if it can be written as

(P (x)y′)′ + (S(x)y)′ = 0

for some S(x).

• The differential equation
P (x)y′′ +Q(x)y′ +R(x)y = 0

is exact if and only
P ′′(x)−Q′(x) +R(x) = 0.

(Here, S = Q− P ′ and S′ = R in the previous definition.)

Exact equations can be solved by first integrating to obtain

P (x)y′ + S(x)y = C

and solve this by an integrating factor.

If
P (x)y′′ +Q(x)y′ +R(x)y = 0

is not exact, we mutiply by µ(x) to obtain

µ(x)P (x)y′′ + µ(x)Q(x)y′ + µ(x)R(x)y = 0

and hope that with an appropriate choice of µ(x), it is now exact.

• One can show that µ(x) can be obtained by solving

P (x)µ′′ + (2P ′(x)−Q(x))µ′ + (P ′′(x)−Q′(x) +R(x))µ = 0,

This is known as the adjoint equation.

• An adjoint equation is self-adjoint if its adjoint equation is itself.

• From Problem 43.6 (and also in the lecture notes), a problem is self-adjoint if and only if P ′(x) = Q(x).
Now, we have

P (x)y′′ + P ′(x)y′ +R(x)y = 0

and hence
(P (x)y′)′ +R(x)y = 0,

and the equation is thus in a Sturm-Liouville form (or the standard form of a self-adjoint equation).

• From Problem 43.7, the general form

P (x)y′′ +Q(x)y′ +R(x)y = 0

can be made into a self-adjoint equation if we multiply both sides by

1

P
e
∫
Q/Pdx.
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Example 30. The Legendre’s equation is given by

(1− x2)y′′ − 2xy′ + λy = 0,

with boundary conditions y(0) = y(1) = 0 and λ as part of an eigenvalue problem.

(i) Show that the above equation is self-adjoint.

(ii) Write the Legendre’s equation in its self-adjoint form.

(iii) Write down a function k(x) such that for each pair of eigenfunctions yn(x) and ym(x) correspond-
ing to different eigenvalues, we have∫ 1

0

k(x)yn(x)ym(x)dx = 0.

Suggested Solution:

(i) Using the result from Problem 43.6, it is self-adjoint if P ′ = Q. Indeed, we see that since P (x) = 1 − x2

and Q(x) = −2x, then we have P ′(x) = Q(x).

(ii) Based on the result from Problem 43.6, we can write the above equation as

(P (x)y′)′ +R(x)y = 0,

or
((1− x2)y′)′ + λy = 0.

(iii) Since the self-adjoint form is in a Sturm-Liouville form with homogeneous boundary conditions, we read
off the weight function to be q(x) = 1. In the context of the question above, it suffices to pick k(x) to be
weight function. Hence, we pick k(x) = 1 for all x ∈ [0, 1].
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10 Discussion 10

Euler(-Lagrange)’s Equation for Extremals.

The purpose of this section is to solve the following optimization problem:

minimize/maximize I(y) =

∫ x2

x1

f(x, y(x), y′(x))dx

subject to y(x1) = y1, y(x2) = y2.

Suppose that such a unique optimizer exists (which we shall call it y(x)). Then, it must satisfy the Euler(-
Lagrange) Equation given by

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0. (119)

There are three cases to consider as mentioned in the textbook/lecture notes. However, I would like to approach
this in the sense that we will only rely on (119). To solve the aforementioned problems, we perform the
following sequence of steps:

1. Identify f(x, y, y′) and compute ∂f
∂y ,

∂f
∂y′ , and hence d

dx

(
∂f
∂y′

)
.

2. Plug the above results into the Euler’s Equation and the differential equation for y(x). Note that it is
subjected to the boundary conditions y(x1) = y1 and y(x2) = y2.

Nonetheless, for completeness, we will list out the three different cases as mentioned in the textbook below (c
listed below represents an arbitrary constant):

(A) f(y′) only (x and y missing). Then, d
dx

(
∂f
∂y′

)
= 0 and thus

∂f

∂y′
= c.

(B) f(x, y′) only (y missing). Similarly, d
dx

(
∂f
∂y′

)
= 0 and thus

∂f

∂y′
= c.

(C) f(y, y′) only (x missing). One can show that the Euler equation reduces to

∂f

∂y′
y′ − f = c.

We shall see two examples of this below.



Fall 23 MATH135 Discussion Supplements 68

Example 31. Find the solution to the optimization problem

minimize
∫ 1

0

xy(x) + (y′(x))2dx

subject to y(0) = 0, y(1) = 1.

You may assume that the solution to the Euler’s equation would corresponds to the minimizer of the
functional

∫ 1

0
xy(x) + (y′(x))2dx. Furthermore, you need to find both the function y(x) that optimizes

the functional and the value of the functional evaluated at this function.

Suggested Solution: Note that this falls in neither of the three cases. Nonetheless, you could work out the
corresponding Euler’s equation from first principle. Indeed, since f(x, y, y′) = xy − (y′)2, we have

• ∂f
∂y = x, ∂f

∂y′ = 2y′, and hence d
dx

(
∂f
∂y′

)
= d

dx (2y′) = 2y′′.

• Euler’s equation yields
∂f

∂y
− d

dx

(
∂f

∂y′

)
= x− 2y′′ = 0.

This implies that y′′ = x
2 .

• Integrating twice, we obtain

y(x) =
x3

12
+Ax+B.

• Using the boundary conditions y(0) = 0, y(1) = 1, we have B = 0 and A = 11
12 .

Henceforth, the optimizer (minimizer) is given by

y(x) =
x3

12
+

11

12
x .

The value of the functional is given by∫ 1

0

x

(
x3

12
+

11

12
x

)
+

(
x2

4
+

11

12

)2

dx =
239

180
.
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Example 32. (Snell’s Law.) Consider a light ray entering from a optically less dense medium to an
optically denser medium. Suppose the path of a light ray is parameterized by (x, y(x)). In ray optics, it
is known that the ray follows the path of shortest optical length, defined by

L =

∫ x1

x0

η(x)
√

1 + (y′(x))2dx

for a path starting from (x0, y0) and ending at (x1, y1), with a given position-dependent refractive index
denoted by η(x).

(i) With the help of Euler’s equation, write down a differential equation in y(x) satisfied by the light
ray.

(ii) It is known at along any path, the angle that it makes with the horizontal θ(x) is given by

dy(x)

dx
= tan(θ(x)).

Use this to show that the quantity n(x) sin(θ(x)) is constant for any x along the path.

As a conclusion, if light travels from a medium with optical density η1 at an angle of θ1 with respect to
the horizontal, into a medium with optical density η2 at an angle θ2 with respect to the horizontal, we
must have

η1 sin(θ1) = η2 sin(θ2).

Suggested Solution:

(i) Note that this falls under Case (B).24 Hence, for f(x, y, y′) = η(x)
√
1 + (y′)2 we compute

∂f

∂y′
=

η(x)y′(x)√
1 + (y′(x))2

.

By the Euler’s equation, we thus have that the minimizing path y(x) must satisfy

η(x)y′(x)√
1 + (y′(x))2

= c

with y(x0) = y0 and y(x1) = y1.

(ii) If y′ = tan(θ), then we have
η(x) tan θ(x)√
1 + tan2(θ(x))

= η(x) sin(θ(x)) = c.

Here, we have used the fact that 1 + tan2(θ) = sec2(θ) and tan(θ)
sec(θ) = sin(θ).

24Alternatively, you can always try to compute the Euler’s equation directly and convince yourself that you will obtain the same solution.
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Lagrange Multipliers

The purpose of this section is to solve the following optimization problem:

minimize/maximize f(x1, x2, · · · , xn)
subject to g(x1, x2, · · · , xn) = 0.

Here, we implicitly assume that only one additional condition was imposed. (This idea can be easily generalized
to that with n constraints.)
To find the point(s) that optimizes the function f(x1, · · · , xn), we instead consider the following unconstrained
optimization problem with an additional variable:

minimize/maximize L(x1, · · · , xn;λ) = f(x1, x2, · · · , xn)− λg(x1, x2, · · · , xn).

As per an unconstrained optimization problem, we find the extremal points by solving
∂L
∂x1

= 0,
...
∂L
∂xn

= 0,
∂L
∂λ = 0.

Suppose that upon solving the above system, we obtain an extremal point (x∗1, · · · , x∗n). To determine if this is a
maximum or a minimum point for the objective function f , we could use physical/logical arguments to deduce
if a extremal point is a minimizer or a maximizer.

We shall look at a concrete example below.
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Example 33. (Exercise 68.3(a)) Find the point on the plane ax+ by+ cz = d with d ̸= 0a that is nearest
to the origin.

aThis implies that the plane does not contain the origin.

Suggested Solution:

Here, we would like to minimize the distance (or equivalently, the distance squared) between any point on the
plane (x, y, z) (with ax+by+cz = d) and the origin (0, 0, 0). Thus, we have the following optimization problem:

minimize f(x, y, z) = x2 + y2 + z2

subject to g(x, y, z) = ax+ by + cz − d = 0.

The equivalent unconstrained optimization problem is given by

minimize L(x, y, z;λ) = x2 + y2 + z2 + λ (ax+ by + cz − d) .

To do so, we first compute 
∂L
∂x = 2x+ λa,
∂L
∂y = 2y + λb,
∂L
∂z = 2z + λc,
∂L
∂λ = ax+ by + cz − d.

At the extremal point, we must have ∂L
∂x = ∂L

∂y = ∂L
∂z = ∂L

∂λ = 0. The first three equations imply that

x = −λa
2
, y = −λb

2
, z = −λc

2
.

Plugging these into ∂L
∂λ = 0, we have

−λ
2
(a2 + b2 + c2)− d = 0.

This implies that25

λ = − 2d

a2 + b2 + c2
.

Henceforth, the corresponding extremal point is given by

x =
ad

a2 + b2 + c2
, y =

bd

a2 + b2 + c2
, z =

cd

a2 + b2 + c2
.

To see that this is a minimum point, we can argue that it is possible to obtain ∞ for the objective function if we
pick points in the plane sufficiently far away from the origin. Hence, the corresponding critical point that we
have found must corresponds to a local minimum.

25Note that a2 + b2 + c2 > 0 since if that is not the case, then a = b = c = 0, which implies that the equation of the plane is given by
0 = d, a contradiction.
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11 Revision Problems for Finals

Math 135 - Revision Problems for Finals.

Revision Problems for Finals
Note: The exercises below are selected modified problems from the homework problems/midterms/quizzes
/discussion supplements (usually problems that I did not manage to go through in class for that week). These
are solely done for practice purposes and are not necessarily reflective of the nature of questions in the final.

Exercise 14. Solve the following initial value problems:

(i) y′(x) + xy(x) = x2 + 1, y(0) = 0,

(ii) y′′(x) + 4y(x) = cos(x), y(0) = 1, y′(0) = 0,

(iii) y′′(x)− y′(x)− 6y(x) = ex, y(0) = 1, y′(0) = 0,

(iv) x2y′′(x)− 2y(x) = 0, y(1) = 1, y′(1) = 1.

Exercise 15. With the help of the table of Laplace transforms and relevant properties, evaluate

(i) L
[
e4x(x+ 1)2

]
,

(ii) L−1
[

1
p+1 + 1

(p−1)2+1

]
, and

(iii) L−1
[

p
(p+1)(p2+4p+5)

]
.

Exercise 16. Solve the following integro-differential equation:

y′(x) = −y(x)−
∫ x

0

et−xy(t)dt

with initial condition y(0) = 1.

Exercise 17. Consider the initial value problem

y′ = ey, y(0) = 1.

(i) Starting with y0(x) = 1, apply Picard’s method to calculate y1(x) and y2(x).

(ii) Explain why we can expect to have a unique solution to the above initial value problem for x ∈
[−h, h] for some h > 0.

Exercise 18. Let

f(x) =


x for 0 < x ≤ 1,
1
2 for x = 0,

−x for − 1 ≤ x < 0.

(i) Find the Fourier series of f(x) defined above.

(ii) Determine the maximal subset of [−1, 1] such that the Fourier series above is valid.
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Exercise 19. Let

f(x) =


1 for 0 ≤ x < π

4 ,

0 for π
4 ≤ x < π

2 ,
4
π

(
3π
4 − x

)
for π

2 ≤ x < 3π
4 ,

0 for 3π
4 ≤ x < π.

Let

pn(x) = b1 sin(x) + · · ·+ bn sin(nx) =

n∑
k=1

bk sin(kx)

for x ∈ [0, π]. Let En =
∫ π

0
|f(x)− pn(x)|2dx.

(i) Find the value of b1 that minimizes E1.

(ii) Does pn(x) converges to f(x) in the mean? Briefly explain your answer.

(iii) Find the maximal range of values of x in [0, π] for which pn(x) converges to f(x) pointwise.

Exercise 20. Let

f(x) =

{
x+ 1 for 0 ≤ x ≤ π,

1 for − π ≤ x < 0.

(i) Compute the Fourier series of f(x).

(ii) By evaluating your answer in (i) at x = π, deduce the value of the series

∞∑
n=0

1

(2n+ 1)2
.

Exercise 21. Consider the wave equation for x ∈ [0, π] for c > 0 with boundary and initial conditions
given below: 

∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) in (0, π)× (0,∞),

u(0, t) = 0 on {x = 0} × [0,∞),

u(π, t) = 0 on {x = π} × [0,∞),

u(x, 0) = 0 on [0, π]× {t = 0},
∂u

∂t
(x, 0) = f(x) on [0, π]× {t = 0},

Find the general solution to the above equation by separation of variables.
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Exercise 22. Recall that in polar coordinates, the 2D Laplace equation is given by

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0

with general solution (obtained by separation of variables) given by

u(r, θ) =
a0
2

+

∞∑
n=1

rn(an cos(nθ) + bn sin(nθ)). (120)

An alternative expression for the solution is given by the Poisson integral, given by

u(r, θ) =
1

2π

∫ π

−π

1− r2

1− 2r cos(θ − ϕ) + r2
f(ϕ)dϕ. (121)

(i) Solve the above problem with the boundary condition u(r = 2, θ) = 4 cos(2θ).

(ii) Use your answer in (i) and (121) to deduce that

1

2π

∫ π

−π

−60 cos(2ϕ)

17− 8 cos(π/2− ϕ)
dϕ = −16.

Exercise 23.

(i) Let A be an arbitrary real number. Compute the Fourier sine series of the function f(x) = A for
x ∈ [0, π].

(ii) Let A be an arbitrary real number. Compute the Fourier cosine series of the function f(x) = A for
x ∈ [0, π].

(iii) Hence or otherwise, find the solution to the inhomogeneous heat equation (with c > 0) below:

∂u

∂t
(x, t) = c2

∂2u

∂x2
(x, t) in (0, L)× (0,∞),

u(0, t) = π2 on {x = 0} × [0,∞),

u(π, t) = π2 on {x = L} × [0,∞),

u(x, 0) = π3 on [0, π]× {t = 0}.
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Exercise 24. Consider the following equation:

(1− 2x2)y′′ − 4xy′ + λxy = 0,

with boundary conditions y(0) = y(1) = 0 and λ as part of an eigenvalue problem.

(i) Write down the adjoint equation for the equation above.

(ii) Is the equation above in Strum-Liouville form? Explain your answer.

(iii) Write down a function k(x) such that for each pair of eigenfunctions yn(x) and ym(x) correspond-
ing to different eigenvalues, we have∫ 1

0

k(x)yn(x)ym(x)dx = 0.

Exercise 25. Find the solution to the optimization problem

minimize
∫ 1

0

y2(x)− (y′(x))2dx

subject to y(0) = 0, y(π) = 0.

You may assume that the solution to the Euler’s equation would corresponds to the minimizer of the
functional

∫ 1

0
y2(x) − (y′(x))2dx. Furthermore, you need to find both the function y(x) that optimizes

the functional and the value of the functional evaluated at this function.

Exercise 26. Find the solution to the optimization problem

maximize (x− 2)2 + (y − 1)2 + (z − 2)2

subject to x2 + y2 + z2 = 1.

Remark: This corresponds to the point on the sphere x2 + y2 + z2 = 1 furthest away from the point
(2, 1, 2).
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Answers and Hints/Partial Solutions:

• Answer to Exercise 14:

(i) x or e−
x2

2

∫ x

0
e

s2

2 (1 + s2)ds (they are equivalent, since one can show using integrating by parts that∫ x

0
e

s2

2 (1 + s2)ds = xe
x2

2 , and keeping your answer in the second form is sufficient for this case).

(ii) 1
3 (cos(x) + 2 cos(2x)),

(iii) 1
6

(
4e−2x − ex + 3e3x

)
,

(iv) 1+2x3

3x .

• Answer to Exercise 15: See Supplement 2 Example 2.

• Answer to Exercise 16: See Supplement 3 Example 2.

• Answer to Exercise 17:

(i) y1(x) = 1 + ex, y2(x) = eex.

(ii) f(x, y) = ey and ∂f
∂y = ey are continuous on any closed rectangle containing the point (0, 1). Hence,

Theorem A applies, and we thus have a unique local solution around x = 0.

• Answer to Exercise 18:
(i) With the exception of the isolated point, this is a Fourier cosine series on [0, 1]. The Fourier series is
given by

1

2
−

∞∑
n=0

4

π2(2n+ 1)2
cos((2n+ 1)x).

(ii) By Dirichlet Theorem, it converges to x ∈ [−1, 1] \ {0} since it should converge to 0 but f(0) = 1
2 .

• Answer to Exercise 19:

(i) b1 = 2
π

∫ π

0
f(x) sin(x)dx = 2

π

∫ π/4

0
sin(x)dx+ 2

π

∫ 3π/4

π/2
4
π

(
3π
4 − x

)
sin(x)dx = (2−

√
2)(4+π)
π2 .

(ii) Yes. Fourier series converges to the function that it represents in the mean.

(iii) [0, π] \
{
0, π4 ,

π
2

}
. (Consider the odd extension of the graph, so this is almost equivalent to the graph

in Supplement 8. However, since f(0) = 1 but the Fourier sine series converges to 0 at x = 0, then
x = 0 is also excluded.)

• Answer to Exercise 20: This corresponds to Midterm 2 Problem 2 Rephrased.

(i) 1 + π
4 − 2

π

∑∞
n=1

cos((2n−1)x)
(2n−1)2 +

∑∞
n=1

(−1)n+1

n sin(nx).

(ii) Use Dirichlet’s Theorem at x = π to deduce that 1 + π
2 = 1 + π

4 − 2
π

∑∞
n=1

1
(2n−1)2 . The required

expression will then follow by algebraic manipulation.

• Answer to Exercise 21:
Let u(x, t) = X(x)T (t). The boundary and initial conditions translate to X(0) = X(π) = T (0) = 0. By
using the PDE, one should arrive at

X ′′

X
=

1

c2
T ′′

T
= −λ.

Next, solve the eigenvalue problem X ′′ = −λX for X(0) = X(π) = 0 to obtain Xn(x) = sin(nx) for
λn = n2 for n ≥ 0. Plugging these back to obtain the ODE for T as

T ′′
n = −n2c2Tn

with T ′(0) = 0. This gives the general solution to the ODE is given by

Tn(t) = B sin (nct) .

The general solution to the PDE is given by

u(x, t) =

∞∑
n=1

bnXn(x)Tn(t) =

∞∑
n=1

bn sin(nx) sin(nct) .
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By substituting ∂u
∂t (x, 0) = f(x), we have

f(x) =
∂u

∂t
(x, 0) =

∞∑
n=1

ncbn sin(nx) cos(nc× 0) =

∞∑
n=1

cnbn︸︷︷︸
cn

sin(nx).

This is just the Fourier sine series of f(x) on [0, π]. Hence, we have cn = 2
π

∫ π

0
f(x) sin(nx)dx and thus

bn =
cn
cn

=
2

cnπ

∫ π

0

f(x) sin(nx)dx .

• Answer to Exercise 22:

(i) Plugging this into (120), we have

4 cos(2θ) = f(θ) =
a0
2

+

∞∑
n=1

2n(an cos(nθ) + bn sin(nθ)).

By orthogonality of the Fourier series, it is easy to see that bn = 0 for all n ≥ 1, an = 0 for all n ≥ 0
except n = 2, and for n = 2, we have 4 cos(2θ) = 22a2 cos(2θ) which implies that a2 = 1. Plugging
these Fourier coefficients back to (120), we have

u(r, θ) = r2 cos(2θ)

as the full solution.

(ii) Using r = 4 and θ = π/2, observe that u(4, π/2) = 16 cos(π) = −16. On the other hand, the LHS of
the expression to show is obtained by substituting r = 4 and θ = π/2 into the expression in (121).
Here, note that the Fourier series for f(θ) converges pointwise at θ = π/2 since f(θ) = 4 cos(2θ) is
continuous for every θ ∈ [−π, π).

• Answer to Exercise 23:

(i) bn = 2
π

∫ π

0
A sin(nx)dx = 2A(1−(−1)n)

nπ . Hence, we have

f(x) =

∞∑
n=1

4A

(2n− 1)π
sin((2n− 1)x).

(ii) an = 2
π

∫ π

0
A cos(nx)dx = A sin(nπ)

n = 0 for n > 1, while a0 = 2A. Hence, we have

f(x) = A.

(iii) Stationary state solution g(x) = π2 for all x ∈ [0, π]. Let w(x, t) = u(x, t)−g(x). Hence, w(x, t) solves

∂w

∂t
(x, t) = c2

∂2w

∂x2
(x, t) in (0, L)× (0,∞),

w(0, t) = 0 on {x = 0} × [0,∞),

w(π, t) = 0 on {x = L} × [0,∞),

w(x, 0) = π3 − π2 on [0, π]× {t = 0}.

The general solution for w is given by

w(x, t) =

∞∑
n=1

bne
−n2c2t sin(nx).

Plugging the initial data in, we have

π3 − π2 =

∞∑
n=1

bn sin(nx).
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Hence, the coefficients bn are obtained from (i), with A = π3 − π2. Thus, we have

w(x, t) =

∞∑
n=1

4(π3 − π2)

(2n− 1)π
e−(2n−1)2c2t sin((2n− 1)x).

Henceforth, the solution u(x, t) is given by

u(x, t) = w(x, t) + g(x) =

∞∑
n=1

4(π2 − π)

(2n− 1)
e−(2n−1)2c2t sin((2n− 1)x) + π2.

• Answer to Exercise 24:

(i) (1− 2x2)µ′′ − 4xµ′ + λxµ = 0.

(ii) Yes, as it is a self-adjoint equation. Self-adjoint equations can always be made into S-L form. In
particular, we have ((1− 2x2)y′)′ + λxy = 0.

(iii) Reading off the equation from the previous part for q, we have k(x) = q(x) = x.

• Answer to Exercise 25: You can either use the fact that this corresponds to Case C or compute the Euler’s
equation directly to obtain

y′′ + y = 0, y(0) = y(π) = 0.

The solution to this is given by y(x) = sin(x). The corresponding value of the functional is given by∫ π

0

sin2(x)− cos2(x)dx = 0.

• Answer to Exercise 26: You will get two different values of λ; λ = 4 or λ = −2. For λ = −2, the corre-
sponding point is

(
2
3 ,

1
3 ,

2
3

)
with distance 2. For λ = 4, the corresponding point is

(
− 2

3 ,−
1
3 ,−

2
3

)
with dis-

tance 4. Henceforth, the point on the sphere that maximizes its distance from (2, 1, 2) is
(
−2

3
,−1

3
,−2

3

)
.

This is supported by our physical intuition, as these points are antipodal points on the sphere, with one
of the points maximizing distance and the other minimizing distance. Alternatively, one could say that
by Extreme Value Theorem, since the sphere is closed and bounded, the extreme value must be attained
somewhere, and it suffices to compare the value of the distance at these two extremal points.

References

[1] George F. Simmons. Differential Equations with Applications and Historial Notes. CRC Press, 3rd edition,
2016.


