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1 Discussion 1.

136 Pre-requisite Materials

Partial Derivatives.

Definition 1. Consider a function of two variables f(x, y), f : D → R, where D ⊂ R2 corresponds to
the domain of the function. We say that the partial derivatives fx or ∂f

∂x of f with respect to x at a point
(a, b) ∈ D exists (and is defined as the value of the following limit) if the following limit exists:

fx(a, b) =
∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h
. (1)

Similarly, we can define fy or ∂f
∂y as follows:

fy(a, b) =
∂f

∂y
(a, b) = lim

h→0

f(a, b+ h)− f(a, b)

h
. (2)

Computationally, as observed from the limits above, ∂f
∂x is the same as differentiating f with respect to x,

while keeping y constant. Such a concept generalizes to a function with n ∈ N variables, in which partially
differentiating with respect to one of the variables can be done computationally by keeping the other variables
constant. The following example illustrates some of these computation:

Example 2.

(a) Let f(x, y) = x2y. Compute ∂f
∂y .

(b) Let f(x, y, z) = x2y + ez sin(y). Compute ∂f
∂z (1, 1, 1).

Suggested Solution:

(a) ∂f
∂y = ∂

∂y (x
2y) = x2 (by treating x as a constant when we are differentiating with respect to y).

(b) ∂f
∂z = ∂

∂z (x
2y + ez sin(y)) = ez sin(y) (by treating x and y as constants when we are differentiating

with respect to z). Thus, we can compute ∂f
∂z by plugging in (x, y, z) = (1, 1, 1) into our expression

above to obtain:
∂f

∂z
(1, 1, 1) = e1 sin(1).
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Example 3. (A partial derivative riddle.) A student propose the following computation for computing
partial derivatives of the Cartesian coordinates (x, y) in R2 with respect to the polar coordinates
variables (r, θ) as follows:

136 Student in Another Dimension (since this student is unlikely to make this mistake after today!):
Since x = r cos(θ) and y = r sin(θ), we can compute

∂x

∂r
=

∂

∂r
(r cos(θ)) = cos(θ) =

x

r
. (3)

However, we can also show that r2 = x2 + y2, so taking ∂
∂r on both sides of the equation, we obtain

2r =
∂

∂r
(x2 + y2) = 2x

∂x

∂r
. (4)

From (3) and (4), we obtain
∂x

∂r
=
x

r
=
r

x
, (5)

which seems to be contradictory. What went wrong here?

Suggested Solution: We have to be careful as to “what is kept constant”. In (3), when we take ∂
∂r ,

the variable kept constant is θ (since we view x as a function of two variables, θ and r). In (4), when
we take ∂

∂x , the variable kept constant is y. Thus, if we note down the variable that is kept constant in
our computation (and record it as a subscript - see the equations that follow), we have a slightly more
rigorous way of writing (3) and (4) as follows:(

∂x

∂r

)
θ

=
x

r
, (6)

while (
∂x

∂r

)
y

=
r

x
. (7)

Then, it is clear that our equality in (5) was not exactly an “equality” per se, that is,

x

r
=

(
∂x

∂r

)
θ

( not necessarily = )

(
∂x

∂r

)
y

=
r

x
. (8)

Explicitly, in (4), if we have kept the same variable θ constant, it should have been

2r =

(
∂

∂r

)
θ

(x2 + y2) = 2x

(
∂x

∂r

)
θ

+ 2y

(
∂y

∂r

)
θ

. (9)
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Multivariable Calculus Operators.

Definition 4. Let f : D → R and F : D → Rn (ie a vector-valued function), where D ⊂ Rn is the domain

of the functions. Note that we can write f(x1, ..., xn) and F(x1, ..., xn) =

F1(x1, ..., xn)
...

Fn(x1, ..., xn)

, where Fi are

the components of the vector(-valued function).

• The gradienta of f is defined as

∇f =

〈
∂f

∂x1
, ...,

∂f

∂xn

〉
.

• Given a unit normal vector n, we define the directional derivative of f in the direction of n as

∂f

∂n
= n · ∇f.

• The divergence of a vector-valued function F is given by

∇ · F =

n∑
i=1

∂Fi

∂xi
.

• The Laplacianb of a scalar function f is given by

∇2f = ∆f = ∇ · (∇f) =
n∑

i=1

∂2f

∂x2i
.

Note that taking the second derivative ∂2

∂x2 means taking the partial derivative ∂
∂x twice.

• A scalar function f is harmonic if ∇2f = 0.

aSometimes, we write a vector as ⟨...⟩ as a row vector, or
(

...

)
as a column vector. This is completely dependent on the the

reader.
bSome books write it as ∇2, others write it as ∆.

Example 5.

(a) Let f(x, y) = x2y. Compute ∇f .

(b) Let f(x, y) = x2y, and n = ⟨1, 0⟩. Compute ∂f
∂n .

(c) Let f(x, y, z) = x2y + ez sin(y). Compute ∇2f .

Suggested Solution:

(a) ∇f = ⟨∂f∂x ,
∂f
∂y ⟩ = ⟨2xy, x2⟩.

(b) ∇f = ⟨∂f∂x ,
∂f
∂y ⟩ = ⟨2xy, x2⟩. Hence, ∂f

∂n = n · ∇f = ⟨1, 0⟩ · ⟨2xy, x2⟩ = 2xy.

Note that this makes intuitive sense since the directional derivative along ⟨1, 0⟩ basically means the
partial derivative of f along the x−direction.

(c) ∂2f
∂x2 = 2y, ∂2f

∂y2 = x2 + ez cos(y) and ∂2f
∂z2 = ez sin(y).

This implies that ∇2f = x2 + 2y + ez(sin(y) + cos(y)).
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Example 6. (Laplacian in Rn.) Compute ∇2(r2), where r =
√
x21 + ...+ x2n.

Suggested Solution: Note that for a given i ∈ {1, ..., n}, we have

∂r2

∂xi
=

∂

∂xi
(x21 + ...+ x2n) = 2xi.

Thus,
∂2r2

∂x2i
= 2

∂

∂xi
xi = 2.

Summing them up, we have

∇2(r2) =

n∑
i=1

∂2

∂xi
r2 =

n∑
i=1

2 = 2n.

Chain Rule.
Let f : D → R with D ⊂ R2, written as f(x, y). Suppose that x and y are functions of two variables, ie
x : Dx → R2 and y : Dy → R2 for some Dx, Dy ⊂ R2, written as x(u, v) and y(u, v). Then, we have

∂

∂u
f(x(u, v), y(u, v)) =

∂f(x, y)

∂x

∂x(u, v)

∂u
+
∂f(x, y)

∂y

∂y(u, v)

∂u
(10)

One way to understand the above is this:

• You want to reach u via x and y.

• Since both x and y are connected to u, you can do this in two ways.

• One pathway: f → x→ u. The other: f → y → u.

• Do a simple chain rule along each pathway and add them up.

Why does it work? Looking at our chain rule above, see that when we take ∂f
∂x

∂x
∂u , this is nothing but chain rule

if it was f(x(u)) and that we were taking d
du . However, since the way we have written f(x(u)) is to treat y and

v as constants, these are ”implicit” at each step of the computation.

To be notationally complete, using our notation in Example 3, we have(
∂f(x(u, v), y(u, v))

∂u

)
v

=

(
∂f(x, y)

∂x

)
y

(
∂x(u, v)

∂u

)
v

+

(
∂f(x, y)

∂y

)
x

(
∂y(u, v)

∂u

)
v

(11)

A remark here would be that most mathematical literature do not include the explicit variables kept constant as
it is “obvious” to them. However, for applications arising from physical model (especially so in thermodynamics),
it is extremely important to keep track of the variables kept constant!
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Example 7.

(a) Let f(x, t) = x2 − t2 and x(u, v) = eu+v and t(u, v) = eu−v. Compute ∂f
∂v and express it in terms of

u and v.

(b) Let f(x, y) = x2 − y2 and x(u, v) = eu+v and y(u) = u. Compute ∂f
∂v and express it in terms of u and

v.

Suggested Solutions:

(a) Since we have f → x→ v and f → t→ v, then

∂f

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂t

∂t

∂v
= 2xeu+v + 2teu−v = 2e2(u+v) + 2e2(u−v).

(b) We can either apply (11) directly, or derive our new chain rule with the new set of dependence. For
this example, I’ll illustrate the second method. Since the only pathway to v is by f → x→ v (as y is
independent of v), then, we have

∂f

∂v
=
∂f

∂x

∂x

∂v
= 2xeu+v = 2e2(u+v). (12)

Example 8. (A chain rule in Rn.) Suppose that f(x1, ..., xn) and for each i ∈ {1, ..., n− 1}, xi(u) (ie is a
function of one variable, say u), and xn(u, v) (xn is a function of two variables, u and v). Compute

∂f

∂v
.

Suggested Solution: Note that the only pathway from f to v is via f → xn → v since xi for i ∈
{1, ..., n− 1} does not depend on v. This implies that

∂f(x1(u), x2(u), ..., xn(u, v))

∂v
=
∂f(x1, ..., xn)

∂xn

∂xn(u, v)

∂v
. (13)

Integrals in Polar Coordinates. Recall in 32B that we can evaluate a multivariate integral in Cartesian coordi-
nates by converting it into one in polar coordinates (or say cylindrical/spherical coordinates in 3D) via a change
of variable. Explicitly, let x = r cos(θ) and y = r sin(θ). Then, we have∫ ∫

D

f(x, y)dxdy =

∫ ∫
D′
f(x, y)

∣∣∣∣∂(x, y)∂(r, θ)

∣∣∣∣drdθ (14)

where D′ refers to the corresponding domain of integration the function f in polar coordinates, and
∣∣∣∂(x,y)∂(r,θ)

∣∣∣
refers to the Jacobian for such a transformation. This can be computed as a determinant of a 2 × 2 matrix as
follows: ∣∣∣∣∂(x, y)∂(r, θ)

∣∣∣∣ = ∣∣∣∣∂x∂r ∂x
∂θ

∂y
∂r

∂y
∂θ

∣∣∣∣ = ∣∣∣∣ cos θ −r sin(θ)
sin(θ) r cos(θ)

∣∣∣∣ = r. (15)

Example 9. Compute
∫ ∫

D
1dxdy with D = {(x, y) : x2 + y2 ≤ 4}.

Suggested Solution: Convert the double integral in polar coordinates. Note that the corresponding
domain D′ = {(r, θ) : 0 ≤ r ≤ 2, 0 ≤ θ < 2π}. Such a domain can be obtained by substituting x = r cos θ
and y = r sin θ into D to obtain r2 ≤ 4 which implies 0 ≤ r ≤ 2. Furthermore, this does not restrict the
values that θ can take. Thus, 0 ≤ θ < 2π. Hence, we have∫ ∫

D

1dxdy =

∫ ∫ ′

D

rdrdθ =

∫ 2

0

∫ 2π

0

rdrdθ =

(∫ 2

0

rdr

)(∫ 2π

0

dθ

)
= 2× 2π = 4π = π(2)2. (16)

This is consistent with our intuition that the area of a circle of radius 2 is given by π(2)2.
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Divergence Theorem.

Theorem 10. (Divergence Theorem.) If D is a bounded, open set with a piecewise differentiable bound-
ary ∂D, and f is C1 (ie continuously differentiable) vector field defined on D, then∫

D

∇ · fdV =

∫
∂D

n · fdS (17)

where n is the unit normal vector that is defined everywhere to point outside of D.

Divergence Theorem has many applications, that includes:

• Evaluating the surface integral on the right of (17).

• Effectively acts as the fundamental theorem of calculus in Rn, which is used to establish integration by
parts in Rn that will be useful for the proof-based part of this class.

Example 11. Let f(x, y) = ⟨x+ y5, y + x5⟩ and C = {(x, y) ∈ R2 : x2 + y2 = 1}. Compute∫
C

n · fdS.

Suggested Solution: Note that C = ∂D, with D = {(x, y) ∈ R2 : x2 + y2 < 1} (the curve serves as the
boundary of an open disk of radius 1). By Divergence Theorem, we have∫

C

n · fdS =

∫
D

∇ · fdV.

Here, ∇ · f = ∂f1
∂x + ∂f2

∂y = 1 + 1 = 2. This implies that∫
C

n · fdS =

∫
D

∇ · fdV = 2×
∫
D

dV = 2vol(D) = 2π. (18)

Here, volume refers to the 2−dimensional volume, ie area. Furthermore, vol(D) is the area of a circle
with radius 1, and thus = π.

Example 12. (Proof-based application of Divergence Theorem.) Suppose that F is conservative (ie there
exists a function f such that F = ∇f) and that the potential function f is harmonic. Let D be a bounded,
open set with a piecewise differentiable boundary ∂D. Prove that∫

∂D

n · FdS = 0. (19)

Suggested Solution: By Divergence Theorem, we have∫
∂D

n · FdS =

∫
D

∇ · FdV

=

∫
D

∇ · (∇f)dV since F is conservative

=

∫
D

∇2f dV

=

∫
D

0 dV since f is harmonic

= 0.

(20)
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2 Discussion 2.

All functions have sufficient smoothness as required, unless stated otherwise.

Recap: Solving ODEs

(i) Separable ODEs, ie. those in the form of

d

dx
y(x) = f(y)g(x).

Solution: By separation of variables, we have2∫
dy

f(y)
=

∫
g(x)dx.

(ii) General First Order ODEs, ie. those in the form of

d

dx
y(x) = f(x)y(x) + g(x)

for some continuous functions f(x) and g(x). This is done via the use of an integrating factor. First, we
bring the term with y(x) to the left-hand side to obtain

d

dx
y(x)− f(x)y(x) = g(x).

Next, we note that d
dx

(
e−

∫ x f(s)ds
)
= −f(x)e−

∫ x f(s)ds. Thus, we first multiply both sides of the equation

by the integrating factor e−
∫ x f(s)ds and observe that the left hand side now factors as an exact differential

by consider the two terms as the output of a product rule as follows.

e−
∫ x f(s)ds d

dx
y(x)− e−

∫ x f(s)dsf(x)y(x) = e−
∫ x f(s)dsg(x)

d

dx

(
e−

∫ x f(s)dsy(x)
)
= e−

∫ x f(s)dsg(x).

Then, by integrating with respect to x, we have

e−
∫ x f(s)dsy(x) =

∫ x

e−
∫ t f(s)dsg(t)dt+ C

y(x) = e
∫ x f(s)ds

(∫ x

e−
∫ t f(s)dsg(t)dt+ C

)
.

2Notable Point (but not that important for this class): What if f(y) = 0 for some y? To argue this in a rigorous sense, the mode of
argument is always case-dependent. For instance, if d

dx
y(x) = y(x), instead of “dividing” by y(x), one could write it as d

dx

(
e−xy(x)

)
= 0

instead and solve this directly. This completely avoids the “division by zero” issue that we have.
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Example 13. (Some ODEs.) Let x : R → R (ie be a function of one variable, say t).

(i) Solve dx
dt = 1

x for t > 1, with x(1) = 1.

(ii) Solve dx
dt = x+ 1.

Suggested Solutions:

(i) By separation of variables, we bring the x to the other side to obtain∫
xdx =

∫
1dt

x2

2
= t+ C.

(21)

Plugging in x = 1 at t = 1 to obtain C = − 1
2 . Thus, we have

x(t) =
√
2t− 1, t > 1. (22)

Here, we pick the positive root to match the initial condition x(1) = 1.

(ii) By the method of integrating factor, we first bring x to the other side to obtain

dx

dt
− x = 1. (23)

Integrating factor (using the formula above) e
∫
−1dt = e−t. This implies that

e−t d

dt
x− xe−t = e−t

d

dt
(e−tx) = e−t.

(24)

Integrate with respect to t on both sides to obtain

e−tx = −e−t + C (25)

or if we bring e−t to the other side, we get

x = Cet − 1. (26)

Here, C is an arbitrary constant.
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Example 14. (Notations and Total Derivatives.) Suppose we have a function f(x, t) such that x is also a
function of t (ie x = x(t)).

(i) Compute d
dtf(x(t), t).

(ii) Which of the terms below represent the same function?a

− ∂

∂t
f(x(t)− t), f ′(x(t)− t),

∂

∂x
f(x(t)− t), and

d

dt
f(x(t)− t).

Suggested Solutions:

(i) Note that it should be understood from the question that t here is an independent variable, and
x, though looks like an independent variable, is actually dependent on t! Note here that the
right notation should be d

dtf(x(t), t) to emphasize a “total” derivative (we call this the advective
derivative in lecture, motivated from Fluid Dynamics). The main/usual way to understand this
would be that is a chain rule in disguise, in which since t is the only variable, then we have to write
d
dt (ie nothing else is really kept constant.) By the chain rule (by thinking of t as a function of t, in
which the function is the identity function - t(t) = t), we have

df

dt
=
∂f

∂t

∂t

∂t
+
∂f

∂x

∂x

∂t
. (27)

Since ∂t
∂t = 1 and ∂x

∂t is essentially dx
dt (ie nothing else is actually kept constant here, we only have

one variable - that is t!), we have
df

dt
=
∂f

∂t
+
∂f

∂x

dx

dt
. (28)

The equation and the concept above is going to be extremely useful for solving first order PDE by
method of characteristics for section today and Homework 2!

(ii) First, one should understand what is meant by f ′(x(t)− t). This means that we are differentiating
the function f with respect to its argument η. Here, η = x− t. Mathematically, we mean

f ′(x(t)− t) =
df

dη
.

Now, for the first term, we can first write η(x, t) = x − t. See that ∂η
∂t = −1. By the chain rule, we

have b

− ∂

∂t
f(η(x, t)) = −df

dη

∂η

∂t
=

df

dη
. (29)

For the third term, we set η(x, t) = x− t and note that ∂η
∂x = 1. Then, we apply chain rule (similar

to the first term) to obtain
∂

∂x
f(η(x, t)) =

df

dη

∂η

∂x
=

df

dη
. (30)

Last but not least, the last term requires the concept of a total derivative. Since x(t), then we can
view η(t) = η(x(t), t)) = x(t)− t (η as a function of t). This implies that ∂η

∂t = −1 and ∂x
∂x = 1. We

can first apply chain rule to f(η(t)), and see that

d

dt
η(x(t), t) =

∂η

∂t
+
∂η

∂x

dx

dt

(see (i)). This implies that

d

dt
f(η(t)) =

df

dη

dη

dt
=

df

dη

(
∂η

∂t
+
∂η

∂x

dx

dt

)
=

df

dη

(
−1 + 1

dx

dt

)
=

df

dη

(
dx

dt
− 1

)
. (31)

An informal way to think about this is to do chain rule directly:

d

dt
f(x(t)− t) = f ′(x(t)− t)[x(t)− t]′ = f ′(x(t)− t)(x′(t)− 1). (32)

Thus, it is clear that the first three terms mean the same thing, which is not necessarily the same
as the last term.
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aFollowing our convention in Discussion Supplement 1, it is understood that ∂
∂t

=
(

∂
∂t

)
x

(keeping x constant) and vice versa.
bFollowing how chain rule was covered in the previous discussion, we view f → η → x or f → η → t as the only two possible

pathways. Note that we stop only at x since it is kept constant (recall the implicit variable kept constant when we say ∂
∂t

). Since
we would like to take ∂

∂t
, then f → η → t is the only valid pathway!

To get yourself used to the notation, here is an example.

Example 15. Let x(t) = t3 and f(y) = y2. Compute the following:

(i) − ∂
∂tf(x(t)− t),

(ii) f ′(x(t)− t),

(iii) ∂
∂xf(x(t)− t), and

(iv) d
dtf(x(t)− t) by substituting x(t) and computing d

dt directly.

For each case, verify the computations directly and by using the chain rule if possible.

Suggested Solution: Note that for partial derivatives, you are not allowed to substitute x(t) = t3 for say
∂
∂t since we should view x as a “constant” first above the fact that it is a function of t (since ∂

∂x really
means

(
∂
∂t

)
x
, keeping x constant).

Note that f(x− t) = (x− t)2.

(i) Directly: − ∂
∂tf(x− t) = − ∂

∂t (x− t)2 = 2(x− t).
Chain Rule: From the above example, this is equivalent to df

dη = f ′(η). Since f(y) = y2 implies that
f ′(y) = 2y, then f ′(η) = f ′(x− t) = 2(x− t).

(ii) See the above computation under “Chain Rule”. f ′(x− t) = 2(x− t).

(iii) Directly: ∂
∂xf(x− t) = ∂

∂x (x− t)2 = 2(x− t).
Chain Rule: From the above example, this is equivalent to df

dη = f ′(η) = f ′(x− t) = 2(x− t).

(iv) If we say d
dt , we mean that we are viewing f as a function of only one variable, t.

Directly: f(x(t)− t) = (x(t)− t)2 = (t3 − t)2 = t6 − 2t4 + t2.
Thus, d

dtf(x(t)− t) = d
dt (t

6 − 2t4 + t2) = 6t5 − 8t3 + 2t.

Chain Rule: From the previous example, we have d
dtf(x(t)− t) = f ′(x(t)− t)[x(t)− t]′ = f ′(x(t)−

t)(x′(t)− 1).
First, we have f ′(x(t)− t) = 2(x(t)− t) = 2(t3 − t).
Next, we have x′(t)− 1 = (t3)′ − 1 = 3t2 − 1.
Then, d

dtf(x(t)− t) = 2(t3 − t)(3t2 − 1) = 6t5 − 8t3 + 2t.
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Now, we shall proceed to use this method to solve first order linear PDEs (Partial Differential Equations) below.

First Order Linear PDEs - Classification.

Definition 16. Let the unknown function u : Rn → R.

(i) We say that a PDE in u is of first order if there exists a function F such that

F (u, ux1
, ..., uxn

) = 0. (33)

Here, uxi
refers to partial derivatives with respect to the xi variable. Intuitively, it just means that

it contains terms up to its first derivatives only.

(ii) Let us denote the corresponding differential operator for the PDE by L.a We say that the PDE is
linear if L(u+ v) = L(u) + L(v) and L(au) = aL(u) for all functions u, v, and a ∈ R.

ai.e Given an equation with partial derivatives of u, we write it as Lu = 0, where L is the corresponding differential operator.

Example 17. (Examples.)

(i) Let u(x, y) (ie be a function of two variables), and L(u) = ux + uy. We can check see that L(u) = 0
is a first order PDE (since it only contains up to terms in its first derivatives). Furthermore, we can
check that the differential operator L is linear as follows:

• Let u, v be two arbitrary functions. Then, we see that

L(u+ v) = (u+ v)x + (u+ v)y

= ux + vx + uy + vy

= (ux + uy) + (vx + vy)

= L(u) + L(v).

(34)

• Let u be an arbitrary function and a ∈ R be an arbitrary constant. Then,

L(au) = (au)x + (au)y

= aux + auy

= a(ux + uy)

= a(L(u) + L(v)).

(35)

(ii) Let u(x, y) (ie be a function of two variables), and L(u) = (ux)
2. One can check that the corre-

sponding differential operator L is not linear, since

L(au) = ((au)x)
2

= a2(ux)
2

= a2L(u)
(36)

(ie violates the scaling property).
A rigorous proof of this is as follows. To show that L is not linear, we just have to show that either
of the properties fail. In particular, we want to show that the scaling property fails. That is, it
is not true that for all function u(x, y) and a ∈ R, L(au) = aL(u). This is equivalent to cooking
up a counter-example; a function u(x, y) and a constant a such that the above equality does not
hold. Now, pick a = 2 and u(x, y) = x. We can then check that L(2x) = (2(x)x)

2 = 4 while
2L(x) = 2((x)x)

2 = 2, which are clearly not the same!

Solving First Order Linear PDEs.

Method 1: Geometric Method. Given a first order linear PDE, for an unknown function u(x, y) of two variables,
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of the form
a(x, y)ux + b(x, y)uy = 0, (37)

one can view this as (
a(x, y)
b(x, y)

)
· ∇u(x, y) = 0. (38)

Normalizing the vector on the left to be of length one, we have

1√
a2(x, y) + b2(x, y)

(
a(x, y)
b(x, y)

)
· ∇u(x, y) = n · ∇u(x, y) = ∂u

∂n
= 0. (39)

Thus, at every point (x, y) in the corresponding domain, the directional derivative of u along

n = 1√
a2(x,y)+b2(x,y)

(
a(x, y)
b(x, y)

)
(or just

(
a(x, y)
b(x, y)

)
since the magnitude does not affect the direction) vanishes.

This implies that if we sketch out a vector field for n, the function u(x, y) is constant along a curve traced out
by n.

Example 18. (Method of Characteristics - Geometric Method). Let u(x, y) be a function of two variables.
For the following PDE

ux + uy = 0, (40)

(i) Find a general solution to the PDE above, and

(ii) Sketch a quiver plot showing the tangent directions of the characteristics lines.

Suggested Solution: Rewrite the PDE as (
1
1

)
· ∇u = 0. (41)

Thus, u remains constant along lines y = x + C for some constant C. Since C = y − x is a constant,
this implies that starting from a y−intercept C, u takes the same value along the line y = x + C. Thus,
u(x, y) = f(C) = f(y − x) for an arbitrary function f .

Quiver Plot:

Remark: I am personally not a fan of this method. I will be focusing on the alternative method, which is more
robust, and will be elaborated below.
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Method 2: Method of Characteristics.

Given a first order linear PDE, for an unknown function u(x, y) of two variables, of the form

a(x, y)ux + b(x, y)uy = 0. (42)

Suppose that x and y are functions of some common parameter s. (Intuitively, this is the parameter along
characteristics curves.) This implies that we have u(s) = u(x(s), y(s)) (ie we can view u as a function just
depending on s). Then, note that by chain rule, we have

d

ds
u(x(s), y(s)) =

∂u

∂x

dx

ds
+
∂u

∂y

dy

ds
. (43)

Since we are searching for a solution, we shall search for a solution in which dx
ds = a(x(s), y(s)) and dy

ds =
b(x(s), y(s)). This implies from (43) that

d

ds
u(x(s), y(s)) = a(x, y)ux + b(x, y)uy = 0. (44)

This implies that u is constant along characteristics curves (described by a common parameter s, ie (x(s), y(s))).
By solving the following system of ODEs: {

dx
ds = a(x(s), y(s))
dy
ds = b(x(s), y(s))

(45)

we can determine the functions x(s) and y(s). Setting x(0) and y(0) to be points along the boundary (in which
we have imposed certain boundary conditions), then for s ∈ R, we have

u(x(s), y(s)) = u(x(0), y(0)) (46)

since u is constant along characteristics. Next, from the obtain functions x(s) and y(s), which depends on x(0)
and y(0), we solve x(0) and y(0) as a function of x and s, and plug them into (46) to obtain our solution.

Such an idea can be generalized to u : Rn → R for n ∈ N≥3 (ie higher dimensions), by solving a system of n
ODEs analogous to (45). (See Homework 2 Problem 5(a) for an example of this.)

This will be clearer if we look at an explicit example.
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Example 19. Solve the following first order PDE using method of characteristics

xux − uy = 0, u(x, 0) = x3 for all x ∈ R, for x, y ∈ R. (47)

Suggested Solution:

1. Let u(x, y) = u(x(s), y(s)).

2. Compute d
dsu(x(s), y(s)) = ux

dx
ds + uy

dy
ds by chain rule.

3. Set dx
ds = x and dy

ds = −1. This implies that d
dsu(x(s), y(s)) = xux − uy = 0, ie u is constant along

characteristics described by (x(s), y(s)).

4. Solve the system of ODEs: {
dx
ds = x(s)
dy
ds = −1

(48)

For the first equation, by separation of variables, we can obtain

x(s) = x(0)es. (49)

The second ODE reads:
dy

ds
= −1. (50)

Direct integration yields:
y(s) = y(0)− s. (51)

5. As we would like to start our characteristic curves from the boundary of the domain y = 0 in
which a boundary condition can be applied to, we set y(0) = 0 and x(0) = x0 for some x0 to be
determined.

6. Since u is constant along characteristics, we have

u(x(s), y(s)) = u(x(0), y(0)) = u(x0, 0) = x30. (52)

7. Now, given a point (x, y) in the domain, we would like to find out which value of x0 we should
pick such that we arrive at (x(s), y(s)) when the parameter takes the value s. This is equivalent to
solving (49) and (51) for x0 as a function of x and y.
(The idea is that x and y are given, and you want to find an s and x0 such that you can arrive at
(x, y) along the characteristics at s, starting from x0.)
Note that s is yet another “unknown”. Given that we have two equations, we can then eliminate
the “unknown”.

8. (49) and (51) reads {
x = x0e

s

y = −s.
(53)

Solving for x0 in terms of x and y, we obtain

x0 = xe−s = xey. (54)

9. Summarizing all that we have, by substituting (52) to (54), the solution is given by

u(x, y) = (xey)3 = x3e3y. (55)

Remark: A simpler method in the lecture works if we were to just parametrize x in terms of y. ie write

u(x, y) = u(x(y), y).
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The corresponding total derivative is given by

d

dy
u(x, y) =

d

dy
u(x(y), y) =

∂u

∂x

dx

dy
+
∂u

∂y
= ux

dx

dy
+ uy. (56)

Multiplying by −1 to the PDE, we get
uy − xux = 0 (57)

and we could have picked dx
dy = −x. However, such a method works more in general if we have PDE of the form

a(x, y)ux + b(x, y)uy = 0. (58)

(ie the original method is more restrictive in the sense that the coefficient of uy must be 1.) If one would like
to consider dividing by a(x, y) throughout the equation, one would have to split solving the characteristics for
cases in which a(x, y) = 0 and solve in the individual domain separated by “curves” in which a(x, y) = 0. This
is possibly more complicated than the above method. This makes the above method the most robust method
dealing with PDE of the form in (58).

The following is a variant of the method of characteristics presented in Strauss’s book, which might have an
easier set of computations to do be done to solve the corresponding first order PDE. We shall apply it to solve a
slight variant of the PDE above.

Example 20. Solve the following first order PDE using method of characteristics

yux + uy = 0, u(x, 0) = x3 for all x ∈ R, for x, y ∈ R. (59)

First, note that if y = 0, then u(x, 0) is just as given above. Thus, we shall consider a given (x, y) ∈ R2

such that y ̸= 0. From the PDE, this implies that

ux +
1

y
uy = 0. (60)

Now, by writing u(x, y) = u(x, y(x)), the total derivative is given by

d

dx
u(x, y(x)) =

∂u

∂x
+
∂u

∂y

dy

dx
= 0 (61)

by the PDE if we set
dy

dx
=

1

y
. (62)

Solving this yields
y2

2
= x+ C =⇒ y2 − 2x = C ′ (63)

for some constantsa C and C ′. Since du
dx is constant along characteristics, we must have u(x, y(x)) = u(C)

if we connect the characteristic curves to some point along the given auxiliary condition.
This implies that we must have

u(x, y) = f(y2 − 2x) (64)

for some function f to be determined. Using u(x, 0) = x3, we have

u(x, 0) = f(0− 2x) = x3

f(−2x) = −1

8
(−2x)3

f(s) = −1

8
s3.

(65)

Thus, we have

u(x, y) = f(y − x2) = −1

8
(y − x2)3. (66)

aHere, we absorb 2 into C and write it as C′ for convenience.
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One should weigh the advantages of each of these method, try to understand how each of these methods work,
and use them accordingly!
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3 Discussion 3.

All functions have sufficient smoothness as required, unless stated otherwise.

Additional Considerations for Method of Characteristics.

We might face potential problems when we are trying to solve a PDE by the method of characteristics. These
includes

• Multiple values at a given point. This can happen if there exists two (possibly) different characteristics
with different values of (constant) u along these characteristics connecting to the given point.

• No possible value at a given point. This happens if there are no characteristics from the auxiliary boundary
conditions that connects to the given point.

The following example illustrates such an idea.

Example 21. Consider the PDE consisting of the unknown function u(x, y) given by

ux + 3x2uy = 0, (67)

with boundary conditions {
u(x, 0) = x3 for all x ≥ 0

u(0, y) = y2 for all y ≥ 0.
(68)

Solve for u(x, y) for x, y > 0.

Suggested Solution: Recall that we can solve this by parametrizing the characteristic curves. Note that
for both methods as covered in the previous discussion supplement, they are kind of equivalent. We
shall display both methods of solving this PDE below.

Method 1 (Strauss’s Idea):
Parametrizing the curve by (x, y) = (x, y(x)), we write down the corresponding advective derivative for
u(x, y(x)) to obtain

d

dx
u(x, y(x)) =

∂u

∂x
+
∂u

∂y

dy

dx
= 0 (69)

by the PDE if we set
dy

dx
= 3x2. (70)

Integrating, we have
y = x3 + C. (71)

This implies that C = y − x3. Thus, we have

u(x, y(x)) = u(C) = f(y − x3) (72)

for some undetermined function f .a

To make sense of the above equation, the idea is to determine the function f . Thus, we shall consider
the shape of the characteristics curves y = x3 + C for each value of C as shown below.
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Thus, from the diagram above, one can see that if y − x3 > 0, then such a point (x, y) is reached by a
characteristic curve with C > 0 that originates from the y−axis. Let this point on the y−axis be (0, y0).
Substitute this to (71), we have

y0 = C. (73)

Since u is constant along characteristics, this implies that

u(x, y(x)) = u(0, y0) = y20 = C2 = (y − x3)2. (74)

On the other hand, if the given point (x, y) is such that y− x3 < 0, then such a point (x, y) is reached by
a characteristic curve with C < 0. Since our domain is such that x, y ≥ 0, the characteristic curves must
originate from the x−axis (since its y−intercept is negative). Let (x0, 0) be this point on the x−axis.
Substitute this into (71), we have

0 = x30 + C (75)

so that
x0 = (−C) 1

3 . (76)

Thus, along characteristics, we get

u(x, y(x)) = u(x0, 0) = x30 =
(
(−C) 1

3

)3
= −C = −(y − x3) = x3 − y. (77)

Hence, we have

u(x, y) =

{
(y − x3)2 for y > x3

−(y − x3) for y < x3.
(78)

Note that for y = x3, this can be solved using either boundary conditions, with the characteristic curve
given by y = x3, and u = 0 (since u(0, 0) = 0 by either boundary conditions), a constant, along this
curve. Alternatively, this can be deduced by continuity of u along y = x3.

Method 2 (Parametrized Curves): Consider the parametrized characteristic curve given by (x(s), y(s)).
Writing down the advective derivative, we have

d

ds
u(x(s), y(s)) =

∂u

∂x

dx

ds
+
∂u

∂y

dy

ds
= 0 (79)

by the PDE if we set {
dx
ds = 1
dy
ds = 3x2.

(80)

Next, we shall solve the ODE system above. Since x also depends on s, it is more instructive to solve the
first ODE in x. Integrating directly, we have

x(s) = x(0) + s. (81)

Plugging this into the second equation, we have

dy

ds
= 3(x(0) + s)2 (82)

and integrating, we obtain
y(s) = y(0) + (x(0) + s)3. (83)

Note that from this equation, we immediately have y(0) = y(0) + (x(0))3, and thus x(0) = 0. Thus,
suppose that x(0) = 0 necessarily (ie we are starting our characteristics curves from the y−axis). Then
we have x(s) = s, and thus in the second equation, we get

y = y(0) + x3. (84)

Note that since our boundary condition is on the y−axis for y(0) ≥ 0, we are looking at cubic curves
y = x3 with non-negative y−intercept. Thus, given any x, y, we can solve for y(0) to obtain

y(0) = y − x3. (85)
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Since y(0) ≥ 0, this method only works for given x, y such that y ≥ x3. Nonetheless, since u is constant
on characteristics, we have

u(x, y) = u(x(s), y(s)) = u(x(0), y(0)) = u(0, y(0)) = y(0)2 = (y − x3)2 (86)

for y ≥ x3.

If instead, we want to start from the x−axis for x ≥ 0, since we are required to have x(0) = 0, we want
to pick a value of s = s′ such that y(s′) = 0. Thus, from (83), we have

0 = y(0) + s3 (87)

or s′ = (−y(0)) 1
3 . From (81), this implies that

x(s′) = s′ = (−y(0)) 1
3 . (88)

Thus, since u is along the characteristics, we have

u(x, y) = u(x(s), y(s)) = u(x(s′), y(s′)) = u(x(s′), 0) = (x(s′))3 = −y(0) = −(y − x3). (89)

Note that this is only valid for x(s′) ≥ 0, ie −(y − x3) ≥ 0 or y ≤ x3. If y ≤ x3, then by (85), we have
y(0) ≤ 0 which is consistent with the diagram below.b Thus, we obtain the solution for the entire domain
x, y > 0 as follows:

u(x, y) =

{
(y − x3)2 for y ≥ x3

−(y − x3) for y ≤ x3.
(90)

The following diagram summarizes the computations for Method 2.

aNote that the meaning of setting u(x, y(x)) = u(C) is such that we are saying that since u is constant along characteristics, we
must be able to follow along characteristics from the given point (x, y(x)) to a boundary point (ie in which we impose boundary
conditions on). For every (x, y) in the domain, we can find a C and a corresponding point on the boundary such that there exists
a characteristic curve that connects from that boundary point to (x, y).

bIntuitively, for y(0) ≤ 0, we instead evolve along characteristic curves such that we instead start on the x−axis and use the
boundary conditions there!

Remark: If we did not impose boundary conditions such that say u(x, 0) for x ≥ 0 (along the y-axis), then there
are no characteristic curves originating from our boundary conditions that can reach any (x, y) such that y > x3!
(See both methods for a physical interpretation/visualization for this).

Another Remark (Question raised by someone in class): It has been pointed out that the u obtained is not neces-
sarily C1 (i.e. not differentiable across the boundary y = x3), although its certainly continuous in the domain.
However, we also note that if there is a solution, this must be the solution. For this class, we shall assume
that the solutions obtained from formal computations are indeed the solutions. The lack of differentiability is
addressed in what we call a “weak solution”, which is way outside of the scope of this class.
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Mathematical Modelling and PDEs.

Example 22. (Conservation Laws.) Suppose we have PDE for u(x, t) of the form:

ut + (f(u))x = 0, (91)

where t > 0 and x ∈ (a, b) for some a < b ∈ R, with f : R → R being a C1 function. Suppose that we
impose the following Dirichlet boundary conditionsa:

u(a, t) = u(b, t) = 0 (92)

for all time t ≥ 0.
Let us denote the quantity M(t) by

M(t) =

∫ b

a

u(x, t)dx. (93)

Prove that
M(t) =M(0) (94)

for all t > 0.

Suggested Solution. First, we compute dM
dt as follows:b

dM

dt
=

d

dt

∫ b

a

u(x, t)dx

=

∫ b

a

∂tu(x, t)dx by Leibinz Rule

= −
∫ b

a

(f(u))x(x, t)dx by the PDE

= −(f(u(b, t))− f(u(a, t))) by Fundamental Theorem of Calculus

= −(f(0)− f(0)) applying Dirichlet boundary conditions

= 0.

(95)

This implies that M does not change with time, and thus (94) is true. Alternatively, one can take
integration with respect to time on both sides of the equation to obtain (85).

An interpretation of this example is that if we think of u as mass, and f(u) as the term representing the
flux of mass across the boundary, then we see that the total mass M =

∫ b

a
u(x, t)dx mass is conserved.

This is consistent with our interpretation of the transport/continuity equation if we set q(x, t) = f(u(x, t))
as the flux. See here or Lecture 6 materials for more information.

aRecap: This means that the value of the function at the boundary (in which here, it is at x = a and x = b), is zero.
bNote that Leibinz Rule here is given by

d

dt

∫ b(t)

a(t)
u(x, t)dx =

∫ b(t)

a(t)
∂tu(x, t)dx+ u(x, b(t))

db(t)

dt
− u(x, a(t))

da(t)

dt
.

See here for more information.
Further Note: For the analysts in class, interchanging d

dt
with

∫
dx requires justification. In particular, for our case in which a and

b does not depend on t, using your favorite Analysis textbook (ie Rudin/Tao)/materials from 131B, we note that this is allowed as
long as ∂tu exists and

∫ b
a

∫∞
0 |∂tu|dtdx is bounded (so that Fubini’s theorem applies). A stronger condition as mentioned in the

attached link is to just require the continuity of u and ∂tu on a neighborhood of [a, b]×{t}. However, since at the start of all these
discussion supplements, we assume that our function u has the required regularity whenever required, then we just assume that
this is indeed the case!

https://en.wikipedia.org/wiki/Continuity_equation
https://en.wikipedia.org/wiki/Leibniz_integral_rule


Spring 22 MATH136 Discussion Supplements 22

Common types of boundary conditions:

• Dirichlet Boundary Conditions: u|∂Ω = 0 (ie value on the boundary is 0).

• Neumann Boundary Conditions: ∂u
∂n |∂Ω = 0 (ie derivative in some direction (usually normal to the do-

main) along on the boundary is 0). This is used to model the fact that u does not change at the boundary
of the domain of interest (ie heat not flowing across the boundary).

Example 23. (Deriving a Physical Equation.) (Strauss Exercise 1.3.5.) Derive the equation of one-
dimensional diffusion in a medium that is moving along the x axis to the right at constant speed V .

Suggested Solution: Following the derivation in Strauss, we first let u(x, t) be the concentration (mass
per unit length) of an object of interest (say a dye or something).
Remark: I’m following Strauss’ derivation because its a little simpler for this case and straightforward.

Consider a section of the medium from x0 to x1. The total mass of the dye is given by

M(t) =

∫ x1

x0

u(x, t)dx. (96)

This implies that
dM

dt
=

∫ x1

x0

ut(x, t)dx. (97)

By Fick’s law, we know that the flow rate to the right is proportional to −ux. Thus, we have

Mass flow rate,
dM1

dt
(x, t) = Inflow (to the right) at x0 + Inflow (to the left) at x1

= Flow to the right at x0 − Flow to the right at x1
= −Dux(x0, t)− (−Dux(x1, t))
= Dux(x1, t)−Dux(x0, t)

(98)

Here, the convention is that dM refers to mass flowing into the interval (x0, x1). (ie Convention - Use
physical laws such that we compute the amount that flows into the medium - if it is negative, then the
actual flow is out of the medium!)

Furthermore, the motion of the medium carrying the dye along with it contributes to

Moving Medium Contribution,
dM2

dt
(x, t) = −V u(x1, t) + V u(x0, t) (99)

This can be seen from a simple physical idea:

Influx rate from left end, x0 = Increase in mass/time at x0
= Mass/Small length section near x0 × Small length section/time

= Concentration near x0 × Speed = +u(x0, t)× V.

(100)

Here, we attribute the + sign from the fact that the moving medium towards the right drags mass into
the section of interest. Equating the sum of the two contributions to the change in mass in (97), we have
(with D as the constant of proportionality)∫ x1

x0

ut(x, t)dx = Dux(x1, t)−Dux(x0, t)− V u(x1, t) + V u(x0, t). (101)

Taking ∂x1
, we get

ut(x1, t) = Duxx(x1, t)− V ux(x1, t). (102)

Since x1 is arbitrary, we have
ut(x, t) = Duxx(x, t)− V ux(x, t). (103)
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Types of 2nd order linear PDEs. Let us consider the general form of a second order linear PDE below:

a11(x, y)uxx + 2a12(x, y)uxy + a22(x, y)uyy + a1(x, y)ux + a2(x, y)uy + a0(x, y)u = 0. (104)

Note that the factor 2 is introduced for convenience.

(i) We say that the PDE is elliptic at (x, y) if a212(x, y) < a11(x, y)a22(x, y).

(ii) We say that the PDE is hyperbolic at (x, y) if a212(x, y) > a11(x, y)a22(x, y).

(iii) We say that the PDE is parabolic at (x, y) if a212(x, y) = a11(x, y)a22(x, y).

Note that one way to visualize the criterion is to think of a corresponding matrix

A =

[
a11 a12

a21 = a12 a22

]
(105)

that is symmetric, and det(A) > 0 ,< 0, and = 0 implies that the PDE is elliptic, hyperbolic, and parabolic
respectively.

Furthermore,

(i) If the PDE is elliptic, by a change of coordinates, we can reduce it to uxx + Auyy + ... = 0. If the terms in
... is 0 and A = 1, then

uxx + uyy = 0

is the Laplace’s equation.

(ii) If the PDE is hyperbolic, by a change of coordinates, we can reduce it to uxx −Auyy + ... = 0. If the terms
in ... is 0 and A = 1, then

uxx − uyy = 0

is the wave equation. (Treat x→ t and y → x.)

(iii) If the PDE is parabolic, by a change of coordinates, we can reduce it to uxx +0uyy −Auy + ... = 0. (Since
the coefficient of uyy vanishes, we look at the next highest order term.) If the terms in ... is 0, then

uxx −Auy = 0

is the diffusion/heat equation. (Treat y → t.)

Example 24. Find the regions in the xy plane where the equation

yuxx − 2uxy + xuyy = 0 (106)

is elliptic, hyperbolic, or parabolic.

Suggested Solution: The corresponding matrix A =

[
y −1
−1 x

]
has determinant = yx− 1. Thus, it is

• Elliptic if yx− 1 > 0 ie xy > 1,

• Hyperbolic if xy < 1 and

• Parabolic if xy = 1.
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4 Discussion 4.

All functions have sufficient smoothness as required, unless stated otherwise.

(1−dimensional) Wave Equation.

Consider the wave equation with boundary conditions 3 given by
utt(x, t)− c2uxx(x, t) = 0 in R× (0,∞),

u(x, 0) = ϕ(x) on R× {t = 0},
ut(x, 0) = ψ(x) on R× {t = 0}.

(107)

As seen in the lectures, the solution to (107), known as the d’Alembert’s solution4, is given by

u(x, t) =
1

2
(ϕ(x− ct) + ϕ(x+ ct)) +

1

2c

∫ x+ct

x−ct

ψ(y)dy. (108)

Note that it does not matter if you pick c to be the positive or the negative root - the solution in (108) would be
the same (you should try it out!). Nonetheless, for convenience and physical sake, we shall pick c to be positive.

Example 25. Using d’Alembert’s solution (which you can quote, without rederiving it), solve the wave
equation: 

utt(x, t) = 16uxx(x, t) in R× (0,∞),

u(x, 0) = e−x2

on R× {t = 0},
ut(x, 0) = x on R× {t = 0}.

(109)

Suggested Solution: Using d’Alembert’s solution as in (108) (by substituting ϕ(x) = e−x2

and ψ(x) = x),
we have

u(x, t) =
1

2

(
e−(x−ct)2 + e−(x+ct)2

)
+

1

2c

∫ x+ct

x−ct

y dy

=
1

2

(
e−(x−ct)2 + e−(x+ct)2

)
+

1

4c
y2|y=x+ct

y=x−ct

=
1

2

(
e−(x−ct)2 + e−(x+ct)2

)
+

1

4c

(
(x+ ct)2 − (x− ct)2

)
.

(110)

Since c2 = 16, we have c = 4. Thus, we have

u(x, t) =
1

2

(
e−(x−4t)2 + e−(x+4t)2

)
+

1

16

(
(x+ 4t)2 − (x− 4t)2

)
. (111)

3Here, “in R× (0,∞)” means (x, t) ∈ R× (0,∞), ie x ∈ R and t > 0.
Similarly, “on R× {t = 0}” means (x, t) ∈ R× {t = 0}, i.e., for all x ∈ R but only at t = 0.

4Remark: From d’Alembert’s solution, it is possible that we impose initial data ϕ and ψ that are not sufficiently smooth (since we are
imposing that u is equals to a combination of ϕ and ψ to some extent). For an example, see the three pluck problem in Exercise 3 of
Homework 4, where ϕ(x) = 1 − |x| for |x| < 1. Here, ϕ is not differentiable at x = ±1. However, following a remark from Discussion 3,
we shall accept this as the formal solution, which constitutes to a “weak” solution that is way outside of the scope of this class! Feel free to
take graduate classes in applied/pure PDEs to learn more these solutions! References: 251ABC, 266ABC.
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Following the derivation for d’Alembert’s solution, this involves factorizing the differential operator for the wave
equation. For instance, consider the wave equation on R given by

utt − c2uxx = 0 in R× (0,∞). (112)

We factorize the differential operator on the left as follows:(
∂2

∂t2
− c2

∂2

∂x2

)
=

(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
. (113)

We then deduce by a change of variable that the general form of the solution to (112) is given by

u(x, t) = f(x− ct) + g(x+ ct), (114)

where f and g are arbitrary functions (of sufficient regularity), determined using initial conditions. These can
be viewed as a sum of travelling waves, moving at speed c in the positive and the negative x direction! One
can re-derive (114) by looking at the corresponding factorization of the differential operator, in which will be
covered in the example on the next page.

Example 26. Derive sum-of-travelling wave solutions (similar to (114)) to the following PDE:

∂2u

∂t2
− ∂2u

∂x∂t
− 2

∂2u

∂x2
= 0. (115)

Suggested Solution: The factorization problem(
∂2

∂t2
− ∂2

∂x∂t
− 2

∂2

∂x2

)
=

(
∂

∂t
+A

∂

∂x

)(
∂

∂t
+B

∂

∂x

)
(116)

can be viewed as factorizing a second-order polynomial in t and x as follows:

t2 − xt− 2x2 = (t+Ax)(t+Bx). (117)

(View t→ ∂
∂t and x→ ∂

∂x .) Since we can write

t2 − xt− 2x2 = (t+ x)(t− 2x), (118)

then (
∂2

∂t2
− ∂2

∂x∂t
− 2

∂2

∂x2

)
=

(
∂

∂t
+

∂

∂x

)(
∂

∂t
− 2

∂

∂x

)
. (119)

Now, let ξ = t − x and η = 2t + x (swap the coefficients on t and x and put a negative sign on one of
them - the intuition comes from method of characteristics (see below)).
Then, see that for any arbitrary smooth function f , we have by (a careful application of) chain rule,

∂

∂x
f(x, t) =

∂

∂x
f(ξ(x, t), η(x, t))

=
∂f(ξ, η)

∂ξ

∂ξ(x, t)

∂x
+
∂f(ξ, η)

∂η

∂η(x, t)

∂x

=

(
∂ξ

∂x

∂

∂ξ
+
∂η

∂x

∂

∂η

)
f(ξ, η)

=

(
− ∂

∂ξ
+

∂

∂η

)
f(ξ, η).

(120)

Similarly, we have
∂

∂t
f(x, t) =

∂

∂t
f(ξ(x, t), η(x, t))

=
∂f(ξ, η)

∂ξ

∂ξ(x, t)

∂t
+
∂f(ξ, η)

∂η

∂η(x, t)

∂t

=

(
∂ξ

∂t

∂

∂ξ
+
∂η

∂t

∂

∂η

)
f(ξ, η)

=

(
∂

∂ξ
+ 2

∂

∂η

)
f(ξ, η).

(121)
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Now, we check that
(

∂
∂t +

∂
∂x

)
(given by (120) + (121)) gives(

∂

∂t
+

∂

∂x

)
f(x, t) = 3

∂

∂η
f(ξ, η). (122)

Furthermore, we can also check that
(

∂
∂t − 2 ∂

∂x

)
(given by (121) −2 (120)) gives(

∂

∂t
− 2

∂

∂x

)
f(x, t) = 3

∂

∂ξ
f(ξ, η). (123)

Thus, (119) reduces to (by picking f = u)(
∂

∂t
+

∂

∂x

)(
∂

∂t
− 2

∂

∂x

)
u(x, t) = 9

∂

∂η

∂

∂ξ
u(ξ, η) = 0 (124)

where the last equation is by the given PDE (115). Taking partial integration with respect to η (and
dropping the factor 9 by dividing it on both sides), we get

uξ(ξ, η) = f1(ξ) (125)

for arbitrary function f1. Then, perform partial integration with respect to ξ to obtain

u(ξ, η) = f2(ξ) + g(η) (126)

where f2(ξ) =
∫ ξ
f1(s)ds, and g is an arbitrary function. Substitute the subsitutents back to obtain

u(x, t) = f(x− t) + g(x+ 2t) (127)

for arbitrary functions f and g (here we set f(ξ) = f2(−ξ)).

Remark: Note that in (119), we have the operator in the form(
∂

∂t
+

∂

∂x

)(
∂

∂t
− 2

∂

∂x

)
. (128)

The intuition to pick the substituents ξ = t− x and η = t+ 2x is as follows. If we would like to solve a PDE of
the form (

∂

∂t
+

∂

∂x

)
u(x, t) = 0, (129)

we can employ the method of characteristics 5 to deduce that

u(x, t) = f(x− t) (130)

for arbitrary function f . One can repeat a similar argument for the other operator to obtain x+ 2t = C!

5This is done by solving the corresponding ODE to obtain x = t+ C so we have C = x− t.
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Yet another important concept is the domain of dependence and influence. The idea originates from the
d’Alembert’s solution. Recall that we have for a wave equation utt − c2uxx = 0 for x ∈ R, t > 0, we have

u(x, t) =
1

2
(ϕ(x− ct) + ϕ(x+ ct)) +

1

2c

∫ x+ct

x−ct

ψ(y)dy. (131)

Recall that it is easy to check that u(x, 0) = ϕ(x) and ut(x, 0) = ψ(x). For t > 0, we can analyze the contribution
of each terms as follows:

• The first term corresponds to an initial waveform ϕ(x) which splits into two pieces with half the amplitude,
and one goes in the positive x direction at speed c (represented by 1

2ϕ(x − ct)), while the other goes in
the negative x direction at speed c (represented by 1

2ϕ(x + ct))6. This implies that the solution depends
on ϕ at x+ ct and x− ct.

• The second term is a little more subtle (at least for me). Nonetheless, it has the physical structure that
given a point (x, t), the solution depends on ψ on the interval [x− ct, x+ ct].

• In totality, we have that the solution at (x, t) depends on initial data along the interval [x− ct, x+ ct]. This
is what we call the domain of dependence.

• In reverse, if we ask that at a given point along the initial data (say (x0, 0)), and ask which points on the
spacetime diagram it would affect, this constitutes to an outward expanding cone. At every given t > 0,
the physical domain in which it affects is given by [x0 − ct, x0 + ct]. This is what we call the domain of
influence.

These physical interpretation can help us to solve problems in a “physical” sense instead of computing a bunch
of really complicated dependencies using the d’Alembert’s solution directly. The following example illustrates
this.

6Recall that ϕ(x) → ϕ(x+ a) refers to translation of the graph of ϕ(x) in the negative direction by a units.
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Example 27. Consider the dynamics of a sqaure wave propagated by the wave equation with c = 1, as
shown below:

utt = uxx in R× (0,∞). (132)

with

ϕ(x) =

{
1 if |x| < 1

0 otherwise
(133)

and ψ(x) = 0 for all x ∈ R.

Consider an observer at x = 5.

(i) Determine the time interval for which u(5, t) ̸= 0.

(ii) Determine the value of u(5, t) for t in the time interval determined in (i).

Suggested Solution:

Instead of using the explicit d’Alembert’s solution, we shall do this question mainly with the use of a
spacetime diagram! By the physical interpretation in the previous page, the initial waveform created
by ϕ splits into two, and travels in the opposite direction with speed c = 1. The following diagram
summarizes all the arguments that we need. It also follows from what is mentioned in the diagram that
the solution to (i) and (ii) are t ∈ (4, 6) and u(5, t) = 1

2 for t ∈ (4, 6) respectively.

Remarks: One can use a similar argument for Homework 4 Exercise 3, though one should be careful that the
plucked string does not have a uniform amplitude. In Exercise 4, it might be better to use d’Alembert’s formula
to evaluate the explicit solution u(x, t) as ψ rather than ϕ is given, though a spacetime plot and interpreting the
integral physically (see Lecture 8) might help!
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Energy Method and Application to Uniqueness of Solutions to PDEs.

As a recap, let us consider the wave equation, given by

utt − c2uxx = 0 in R× (0,∞). (134)

By physical considerations (kinetic + potential - see Lecture 10 for more details), we should consider the
following energy function given by

E(t) =

∫ ∞

−∞

1

2
(ut)

2(x, t) +
c

2
(ux)

2(x, t)dx. (135)

First, we have the following property:

Proposition 28. If E(t) < +∞ for all t ≥ 0, then E(t) in (135) is constant with respect to t.

As per usual, the trick is to take d
dt on (135) and show that it is equals to 0. Thus, we compute d

dtE(t) as follows:

dE(t)

dt
=

d

dt

∫ ∞

−∞

1

2
(ut)

2(x, t) +
c2

2
(ux)

2(x, t)dx

=

∫ ∞

−∞

∂

∂t

(
1

2
(ut)

2(x, t) +
c2

2
(ux)

2(x, t)

)
dx

=

∫ ∞

−∞
(ututt + c2uxuxt)(x, t)dx

=

∫ ∞

−∞
(ututt + c2uxutx)(x, t)dx

(136)

where the last equality uxt = utx follows from Schwarz theorem (ie interchanging second order partial deriva-
tives if u is sufficiently smooth).
Next, we employ integration by parts to shift ∂x from utx to ux to obtain

dE(t)

dt
=

∫ ∞

−∞
(ututt + c2uxutx)(x, t)dx

=

∫ ∞

−∞
(ututt − c2uxxut)(x, t)dx+ c2(uxut)(x, t)|x=+∞

x=−∞

=

∫ ∞

−∞
(ut)(utt − c2uxx)(x, t)dx

=

∫ ∞

−∞
0 dx = 0.

(137)

The last equality is by the wave equation itself, while the boundary terms ux and ut vanishes. Since we assume
that u is at least C2 (so that the wave equation makes sense), this implies that ut and ux are continuous. Thus,
for E(t) =

∫∞
−∞

1
2 (ut)

2(x, t) + c
2 (ux)

2(x, t)dx < +∞ and that ux and ut are (uniformly) continuous7, then it is
necessary that ux, ut → 0 as x→ ±∞.

An application of the above is to prove the uniqueness of solutions to the wave equation with general boundary
conditions as given in (107), repeated below:

utt(x, t)− c2uxx(x, t) = 0 in R× (0,∞),

u(x, 0) = ϕ(x) on R× {t = 0},
ut(x, 0) = ψ(x) on R× {t = 0}.

(138)

7Uniform continuity is also required for this argument to work. This can be incorporated in the required regularity of unknown functions
to be solved. An alternative way to justify this is by using d’Alembert’s solution to show that the solution is compactly supported (ie
vanishes outside of a closed interval) for all given time t > 0, but this would require an additional assumption that the initial data ϕ and ψ
are compactly supported. One can refer to Strauss to see how such a justification was done.

If doing Analysis concerns you, just let your intuition overwhelm you and assume that this is true since it is intuitively true (hiding the
required analysis under “sufficient regularity”)!
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Suppose that u1 and u2 are solutions to (138), then we have
(u1)tt(x, t)− c2(u1)xx(x, t) = 0 in R× (0,∞),

(u1)(x, 0) = ϕ(x) on R× {t = 0},
(u1)t(x, 0) = ψ(x) on R× {t = 0}.

(139)

and 
(u2)tt(x, t)− c2(u2)xx(x, t) = 0 in R× (0,∞),

(u2)(x, 0) = ϕ(x) on R× {t = 0},
(u2)t(x, 0) = ψ(x) on R× {t = 0}.

(140)

Taking (140) - (139), we have 
wtt(x, t)− c2wxx(x, t) = 0 in R× (0,∞),

w(x, 0) = 0 on R× {t = 0},
wt(x, 0) = 0 on R× {t = 0}.

(141)

with w := u2 − u1. Now, define the energy given by

E(t) =

∫ ∞

−∞

1

2
(wt)

2(x, t) +
c

2
(wx)

2(x, t)dx. (142)

Next, we make the following observations:

• E(0) =
∫∞
−∞

1
2 (wt)

2(0, t) + c
2 (wx)

2(0, t)dx = 0 by the given conditions in (141).8

• E(t) = E(0) by the Proposition above (E is constant with respect to time).

• Furthermore, E(t) ≥ 0 for all t ≥ 0 (see the explicit expression in (142), in which each term in the integral
is squared, so they must be non-negative). 9

Combining all three facts, we have that 0 = E(0) = E(t) ≥ 0 and thus E(t) = 0 for all t ≥ 0. This implies that
for all t ≥ 0, we have ∫ ∞

−∞

1

2
(wt)

2(x, t) +
c

2
(wx)

2(x, t)dx = 0. (143)

Since wt and wx are continuous, and (wt)
2 and (wx)

2 ≥ 0, then we must have wt = wx = 0 for all x ∈ R, t ≥ 0.10

Integrating (partially) with respect to t from wt = 0, we obtain that

w(x, t) = f(x). (144)

Take ∂
∂x on both sides and use the fact that wx = 0 to obtain

0 = wx(x, t) = f ′(x) = 0. (145)

Solve f ′(x) = 0 to obtain f(x) = C (a constant independent of x and t!). Thus, we deduce that

w(x, t) = C (146)

for all x ∈ R, t ≥ 0. Use the initial condition w(x, 0) = 0 to deduce that C = 0. Then, since w = u2 − u1, we
deduce that

u2(x, t) = u1(x, t) (147)

for all x ∈ R and t ≥ 0. This implies that the solution to the wave equation (i.e (138)) is unique!

Remark: Most uniqueness arguments using the energy method follows an extremely similar argument as the
one above, so it is extremely important to know the proof of it (which explains why I’ve included them here).

8wt = 0 is obtained directly. For wx = 0, we obtain this from w(x, 0) = 0 and take ∂
∂x

on both sides of the equation.
9For this case in which E(t) = E(0), we really did not have to check that E(t) ≥ 0. However, for physical reasons and more often than

not, we get that E(t) ≤ E(0) rather than equality. Thus, as explained (towards the end of this page), we have to check E(t) ≥ 0 for all
time t.

10To be more rigorous, this is basically a result from Analysis, which requires continuity of the function(s) that is/are squared. Strauss
calls it the “First Vanishing Theorem”. The interested analysts in the class can refer to Appendix A in Strauss for the proof of this!
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Another Remark: Note that when we made the set of observations above, it suffices to show that E(t) is
non-increasing (“decreasing”; not necessarily constant), while we still need E(0) = 0 and E(t) ≥ 0. This yields
0 = E(0) ≥ E(t) ≥ 0 (note that the second mathematical operator is now ≥ instead of =), and deduce that
E(t) = 0 for all t ≥ 0. See Homework 4 Exercise 5(b).

Yet Another Remark: Thus, if we would like to construct the energy function E that works, we would need
it to satisfy the “observations” as stated above. In particular, the third condition E(t) ≥ 0 restricts our choice
of integrals to consist of squared terms, which explains why such an energy used (ie kinetic/potential energy,
which constitutes to squared terms) works really well!
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Example 29. Consider the “wave equation” given by
(utt − uxt − 2uxx)(x, t) = 0 in (0, 1)× (0,∞),

u(0, t) = u(1, t) = 0 for t ≥ 0,

u(x, 0) = ut(x, 0) = 0 on [0, 1]× {t = 0}.
(148)

By considering the energy

E(t) =
1

2

∫ 1

0

(ut)
2(x, t) + 2(ux)

2(x, t)dx, (149)

show that if u is smooth, then u(x, t) = 0 for all x ∈ [0, 1], t ≥ 0.

Suggested Solution:

• E(t) ≥ 0 follows from the fact that both (ut)
2 and (ux)

2 are ≥ 0.

• E(0) = 0 since ut(x, 0) = 0 and u(x, 0) = 0 implies (by taking ∂x) that ux(x, 0) = 0.

It remains to show that dE(t)
dt ≥ 0 (thus E is either constant or non-decreasing).

Compute

dE(t)

dt
=

1

2

d

dt

∫ 1

0

(ut)
2(x, t) + 2(ux)

2(x, t)dx

=

∫ 1

0

(ututt + 2uxuxt)(x, t)dx

=

∫ 1

0

(ututt + 2uxutx)(x, t)dx by Schwarz Theorem

=

∫ 1

0

(ututt − 2uxxut)(x, t)dx+ 2uxut|x=1
x=0 using Integrating by parts

=

∫ 1

0

ut(utt − 2uxx)(x, t)dx by boundary conditions

=

∫ 1

0

(utuxt)(x, t)dx by PDE

=

∫ 1

0

(ututx)(x, t)dx by Schwarz

=

∫ 1

0

(
(ut)

2

2

)
x

(x, t)dx by black magic/reverse chain rule

=
(ut)

2

2
(1, t)− (ut)

2

2
(0, t) by Fundamental theorem of Calculus

= 0 by boundary conditions.

(150)

Note that the boundary terms vanish because ut(1, t) = ut(0, t) = 0 (take ∂t on u(0, t) = u(1, t) = 0).
With the three conditions checked, we then deduce that 0 ≤ E(t) ≤ E(0) = 0 and thus E(t) = 0 for all
t ≥ 0. This implies that ut = ux = 0 for all x ∈ [0, 1], t ≥ 0. Following a similar argument as on the
previous page, we deduce that u(x, t) = C for some constant independent of x and t, and thus u(x, t) = 0
for x ∈ (0, 1) and t ≥ 0 by applying any of the boundary conditions.
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5 Discussion 5.

All functions have sufficient smoothness as required, unless stated otherwise.

Example 30. Consider the following PDE:

eyux + exuy = 0 (151)

on (x, y) ∈ (0,∞)× (0,∞), with boundary conditions:

u(x, 0) = x3 for all x ≥ 0 (152)

and
u(0, y) = y2 for all y ≥ 0. (153)

Solve for u(x, y) in the domain (0,∞)× (0,∞).

Suggested Solution: Since ey does not vanish, we can divide the PDE by that throughout to obtain

ux + ex−yuy = 0. (154)

Paramterize u with u(x, y) = u(x, y(x)). The advective derivative is given by

d

dx
u(x, y(x)) = ux(x, y(x)) +

dy

dx
uy(x, y(x)) = 0 (155)

if
dy

dx
= ex−y. (156)

Solving this ODE by separation of variables, see that we have∫
eydy =

∫
exdx

ey = ex + C

y = ln (ex + C) and

C = ey − ex

(157)

where the ln term is understood to exist if x takes a corresponding value such that ex +C > 0. What do
the characteristic lines look like?

C > 0.
Now, consider the case for C > 0 and let (0, y0) be point on the y−axis in which the characteristic curve
for a given C > 0 lies on. Thus, we can solve for this point as follows:

y0 = ln (e0 + C) = ln(1 + C) > 0. (158)
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Thus, given any (x, y) with y > x, (ie above the line y = x), we then have

u(x, y(x)) = u(0, y0) = y20 = ln(1 + C)2 = (ln(1 + ey − ex))
2
. (159)

C < 0.
Now, consider the case for C < 0 and let (x0, 0) be point on the x−axis in which the characteristic curve
for a given C < 0 lies on. Thus, we can solve for this point as follows:

0 = ln (ex0 + C) → x0 = ln(1− C) > 0. (160)

Thus, given any (x, y) with y < x, (ie below the line y = x), we then have

u(x, y(x)) = u(x0, 0) = x30 = ln(1− C)3 = (ln(1 + ex − ey))
3
. (161)

C = 0.
Since along the characteristic curve (ie y = x), we can trace all the way back to the origin, we then have

u(x, y(x)) = u(0, 0) = 0. (162)
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Example 31. Let us consider an observer in 3D, with the observer’s position represented in Cartesian
coordinates (x, y, z), and the observer’s path parametrized by time t (that is, r(t) = (x(t), y(t), z(t))).
With respect to a stationary observer, the density of matter u(x, y, z, t) is described by the PDE:

ut + ux + tuy + t2uz = 0 (163)

for t > 0. Assume that we have an initial distribution of matter at t = 0, given by u(x, y, z, 0) = f(x, y, z)
for some smooth function f on R3.

(i) Given a position (x(t), y(t), z(t)) of the observer at time t, write down the velocity vector r′(t)
describing the velocity of the observer such that the density of matter does not change relative to
this observer.

(ii) Solve the PDE (163) for u(x, y, z, t), with (x, y, z, t) ∈ R3 × (0,∞).

Suggested Solution:

(i) Invoking the advective derivative for (x(t), y(t), z(t), t), we have

d

dt
u(x(t), y(t), z(t), t) =

dx

dt

∂u

∂x
+

dy

dt

∂u

∂y
+

dz

dt

∂u

∂z
+
∂u

∂t
= 0 (164)

if 
dx(t)
dt = 1

dy(t)
dt = t

dz(t)
dt = t2.

(165)

Thus, the corresponding velocity vector is given by r′(t) = (x′(t), y′(t), z′(t)) = (1, t, t2) at a given
time t.

(ii) Let us try to solve for x(t), y(t) and z(t) in (165). By directly integrating the system in (165), we
obtain 

x(t) = x(0) + t

y(t) = y(0) + t2

2

z(t) = z(0) + t3

3 .

(166)

so we have 
x(0) = x(t)− t

y(0) = y(t)− t2

2

z(0) = z(t)− t3

3 .

(167)

Thus, along characteristics for which u is constant, we have

u(x(t), y(t), z(t), t) = u(x(0), y(0), z(0), 0) = f(x(0), y(0), z(0)) = f

(
x− t, y − t2

2
, z − t3

3

)
(168)

as the required solution.
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Example 32. Let us consider a similar set up as in Homework 3 Exercise 2, in which we consider the
1D flow of heat along a bar. Assume that the bar lies along 0 ≤ x ≤ L. We shall summarize the physical
scenario below:

• Amount of thermal energy in unit length of bar is related to its temperature T by CPT , where CP

is the constant representing heat capacity.

• Thermal energy is conducted along the bar, and the rate of flow of thermal energy at a point x is
given by Fick’s law; q(x, t) = −k ∂T

∂x , where k represents the thermal conductivity.

The PDE satisfied by the temperature T (x, t) along the rod at position x ∈ (0, L) at an arbitrary time
t > 0 is given by

Tt =
CP

k
Txx. (169)

You can assume that both Cp and k are positive constants.
Write down the corresponding PDE with the appropriate boundary conditions satisfied by T if the fol-
lowing changes were made (simultaneously)

1. The temperature at x = L is maintained at some temperature T0.

2. Thermal energy is supplied on the left end of the bar at x = 0 at a rate of Q.

Suggested Solution: Note that the PDE remains unchanged (we do not have a “uniform” heat source
that increases the temperature of the rod throughout, and thus, we do not have a source term s as in
Homework 3 Problem 1. Nonetheless, we have to write down the corresponding boundary conditions
satisfied by T as follows.

1. This implies that T (L, t) = T0 for all t ≥ 0, since the temperature is fixed at this value.

2. By Fick’s law, this is basically the value of q at x = 0. Thus, we have Q = q(0, t) = −kTx(0, t), and
thus Tx(0, t) = −Q

k for all t > 0.
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Example 33. A commonly used equation to model traffic flow is known as the Burger’s equation. Let
u(x, t) be the density of cars at position x ∈ [0, L] and time t ≥ 0 (where L is the length of the road
of interest). Then, under some sort of non-dimensionalization, u satifies the Burger’s equation as given
below:

ut(x, t) + u(x, t)ux(x, t) = 0. (170)

Let us denote the total number of cars on the road by N(t), which we can obtained as follows:

N(t) =

∫ L

0

u(x, t)dx. (171)

One possible way to include a physical boundary condition that the number of cars on the road stay
constant, is to impose that dN

dt = 0 for all t > 0. However, this might be unnecessary, and one could
instead impose

u(L, t) = u(0, t) (172)

for all t > 0.

Show that indeed, if one impose (172), then the number of cars on the road x ∈ [0, L] stays constant for
all time t > 0.

Suggested Solution: As per usual, our strategy is to compute dN(t)
dt . Indeed, we have

dN(t)

dt
=

d

dt

∫ L

0

u(x, t)dx

=

∫ L

0

ut(x, t)dx apply PDE next

=

∫ L

0

uux dx with (x, t) supressed

=

∫ L

0

(
u2

2

)
x

dx by reverse chain rule

=
u2

2
(L, t)− u2

2
(0, t) by Fundamental Theorem of Calculus

= 0 since u(L, t) = u(0, t) for all t > 0.

(173)

Thus, we can then deduce that the number of cars on the road stays constant for all time t > 0.
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Example 34. Consider the wave equation:

utt(x, t) = 16uxx(x, t) in R× (0,∞),

u(x, 0) =

{
x2 − 255 for |x| ≤ 16

0 otherwise
on R× {t = 0},

ut(x, 0) =

{
1 for |x| < 1

0 otherwise
on R× {t = 0}.

(174)

Compute

(i) u(21, 1),

(ii) u(0, 2), and

(iii) u(8104, 2022).

Hint: This is a question that is testing mainly the concept on domain of dependence/influence.

Suggested Solution: The wave speed is given by c =
√
16 = 4. By d’Alembert’s solution, explicitly given

by

u(x, t) =
1

2
(ϕ(x− 4t) + ϕ(x+ 4t)) +

1

8

∫ x+4t

x−4t

ψ(y)dy, (175)

we can consider the contribution by ϕ and ψ individually, and then add them up in the end!

ϕ.

ψ. Note that the integrand ψ is 1 if |y| ≤ 1. Thus, we can interpret the integral as
1
8 |(x− 4t, x+ 4t) ∩ (−1, 1)| (here | · | refers to the length of the interval). One can interpret this ge-
ometrically, or just notice that since we are given a bunch of points, we can just treat this as a bunch of
computational exercise. Hence, we have

• At (21, 1), we have 1
8 |(21− 4, 21 + 4) ∩ (−1, 1)| = 0.

• At (0, 2), we have 1
8 |(−8, 8) ∩ (−1, 1)| = 2

8 = 1
4 .
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• At (8104, 2022), we have

1

8
|(8104− 4× 2022, 8104 + 4× 2022) ∩ (−1, 1)| = 1

8
|(16, 16192) ∩ (−1, 1)| = 0.

(Note that this is consistent with the concept of domain of dependence, which can be understood as
follows. For a given t, and a point x, we look an interval given by (x− 4t, x+4t) in which u depends on.
This can be seen as a cone drawn backwards with speed 4 and to see if this coincides with the supporta

of the initial data ψ (which is (−1, 1)). If they do not intersect, then ψ did not impact this point (x, t)!
See diagram below for a visualization of this, which helps you to visualize what you are computing!)

Summarizing, we then have

• u(21, 1) = 0 + 0 = 0,

• u(0, 2) = −191 + 1
4 = −190.75, and

• u(8104, 2022) = 1
2 + 0 = 1

2 .

aSupport of a function refers to the set of points in the domain of the function in which the function does not vanish.
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Example 35. Consider the following modified wave equation:
(utt + ut − uxx + u)(x, t) = 0 in R× (0,∞),

u(x, 0) = ϕ(x) on R× {t = 0},
ut(x, 0) = ψ(x) on R× {t = 0}.

(176)

By considering the energy

E(t) =
1

2

∫ ∞

−∞
(ut)

2(x, t) + (ux)
2(x, t) + u2(x, t)dx, (177)

prove that the above modified wave equation has at most one u ∈ C2 solution, with ux and ut vanishing
at x→ ±∞.

Suggested Solution: Suppose that u1 and u2 are solutions to (176). Then,
((u1)tt + (u1)t − (u1)xx + u1)(x, t) = 0 in R× (0,∞),

(u1)(x, 0) = ϕ(x) on R× {t = 0},
(u1)t(x, 0) = ψ(x) on R× {t = 0}.

(178)

and 
((u2)tt + (u2)t − (u2)xx + u2)(x, t) = 0 in R× (0,∞),

(u2)(x, 0) = ϕ(x) on R× {t = 0},
(u2)t(x, 0) = ψ(x) on R× {t = 0}.

(179)

Take (179) − (178) to obtain the following PDE for w = u2 − u1 ∈ C2 below
(wtt + wt − wxx + w)(x, t) = 0 in R× (0,∞),

w(x, 0) = 0 on R× {t = 0},
wt(x, 0) = 0 on R× {t = 0}.

(180)

Replacing u by w in the energy in (177), we have

E(t) =
1

2

∫ ∞

−∞
(wt)

2(x, t) + (wx)
2(x, t) + w2(x, t)dx. (181)

One can check that E(0) = 0 and E(t) ≥ 0 for all t ≥ 0 (see Discussion Supplement 4 for details). It
remains to compute dE

dt and check that it is ≤ 0 for all t > 0. Thus, we have (with (x, t) suppressed)

dE(t)

dt
=

1

2

d

dt

∫ ∞

−∞
(wt)

2 + (wx)
2 + w2dx

=
1

2

∫ ∞

−∞

∂

∂t
((wt)

2 + (wx)
2 + w2)dx

=

∫ ∞

−∞
wt(wtt) + wxwxt + wwtdx by Chain rule

=

∫ ∞

−∞
wt(wtt) + wxwtx + wwtdx w ∈ C2

=

∫ ∞

−∞
wt(wtt)− wxxwt + wwtdx− wxwt|x=∞

x=−∞ Integration by parts

=

∫ ∞

−∞
wt(wtt)− wxxwt + wwtdx boundary terms vanish

=

∫ ∞

−∞
wt(wtt − wxx + w)dx regrouping terms

=

∫ ∞

−∞
wt(−wt)dx by PDE

= −
∫ ∞

−∞
(wt)

2dx ≤ 0 for all t > 0.

(182)
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For a discussion on why boundary terms vanish, see Discussion Supplement 4 (for this case, since (u1)x,
(u1)t, (u2)x, and (u2)t all vanish at x → ±∞, then wt and wx do too!). The above three properties thus
implies that wt = wx = w = 0 in R × (0,∞). In particular, we immediately obtain w = 0, and thus
u1(x, t) = u2(x, t) in R× (0,∞).
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Additional Exercises

Exercise 36. (Strauss 1.2 Exercise 1) Solve the PDE

2ut + 3ux = 0 (183)

with the boundary condition u(x, 0) = sin(x) for all x ∈ R, for u(x, t) with (x, t) ∈ R× (0,∞).

Exercise 37. (Strauss 1.2 Exercise 3.) Solve the PDE

(1 + x2)ux + uy = 0 (184)

for its general solution.

Exercise 38. (Strauss 1.2 Exercise 7.)

(i) Solve the PDE
yux + xuy = 0, u(0, y) = e−y2

. (185)

(ii) In which region of the xy−plane is the solution uniquely determined?

Exercise 39. (Strauss 2.1 Exercise 7.) Consider the 1D wave equation
utt(x, t)− c2uxx(x, t) = 0 in R× (0,∞),

u(x, 0) = ϕ(x) on R× {t = 0},
ut(x, 0) = ψ(x) on R× {t = 0}.

(186)

Show that if ϕ and ψ are odd functions of x, then the solution u(x, t) is also an odd function in x for all
t > 0.

Exercise 40. (Strauss 2.1 Exercise 9.) Consider the 1D “wave” equation
(uxx − 3uxt − 4utt)(x, t) = 0 in R× (0,∞),

u(x, 0) = x2 on R× {t = 0},
ut(x, 0) = ex on R× {t = 0}.

(187)

Solve for u(x, t) in R× (0,∞).

Exercise 41. (Strauss 2.1 Exercise 11.) Find the general solution u(x, t) of

3utt − 10uxt + 3uxx = sin(x+ t) in R× (0,∞) (188)

in R× [0,∞).

Exercise 42. (Strauss 1.6 Exercise 4.) Classify the following second order linear PDE (ie is this elliptic,
parabolic or hyperbolic):

uxx − 4uxy + 4uyy = 0. (189)
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Exercise 43. Consider the 1D wave equation
(utt − uxx)(x, t) = 0 in R× (0,∞),

u(x, 0) =

{
1 if x < 0

0 otherwise
on R× {t = 0},

ut(x, 0) = 0 on R× {t = 0}.

(190)

This is also known as a dam break problem, which models the flow of water along a river when a dam
breaks and water rushes from behind (with a sudden difference in height u of say 1 at t = 0 when the
dam breaks completely at that instance).

(i) Determine u(2, 1) and

(ii) u(−2, t) as a function of t for t ≥ 0.

Exercise 44. Consider the telegrapher’s equation given by

utt + aut = c2uxx in R× (0,∞) (191)

with a > 0. This models the vibration of a string under frictional damping. The classical energy function
(in the absence of damping) is given by

E(t) =
1

2

∫ 1

0

(ut)
2(x, t) + c2(ux)

2(x, t)dx. (192)

In Homework 4 Exercise 5(b), we have shown that the energy decreases monotonically with time. Now,
consider instead that a < 0. Show that the energy increases monotonically with time. This should be
consistent with our intuition that aut corresponds to a damping term, and thus by reversing the sign of
a, we are introducing energy to the system over time!

Exercise 45. Let us consider a similar set up as in Homework 3 Exercise 2, in which we consider the 1D
flow of heat along a bar. Assume that the bar lies along 0 ≤ x ≤ L. We shall summarize the physical
scenario below:

• Amount of thermal energy in unit length of bar is related to its temperature T by CPT , where CP

is the constant representing heat capacity.

• Thermal energy is conducted along the bar, and the rate of flow of thermal energy at a point x is
given by Fick’s law; q(x, t) = −k ∂T

∂x , where k represents the thermal conductivity.

The PDE satisfied by the temperature T (x, t) along the rod at position x ∈ (0, L) at an arbitrary time
t > 0 is given by

Tt =
CP

k
Txx. (193)

You can assume that both Cp and k are positive constants.
Write down the corresponding PDE with the appropriate boundary conditions satisfied by T if the fol-
lowing changes were made (simultaneously)

1. The temperature at x = 0 is fixed at an increasing rate, with T (0, 0) = T0 and that the temperature
at this end increases at a rate of r (ie the temperature increases by r units for every unit increase
in time t, here the units are suppressed, and represents the corresponding S.I units).

2. No conduction of the heat happens at x = L.
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For solutions to the above problems,

• You might be able to find the solutions to the first seven problems from the solution manual of Strauss’
book.

• For the third problem from the last, the numerical values are given by 0 and u(2, t) =

{
1 for t ∈ [0, 2]
1
2 for t > 2

.

• The second problem from the last should be doable (basically something similar to Homework 4 Exercise
5(b)). Since it is not due yet (and that it is extremely similar to that), I will not provide the solution to
this exercise.

• For the last problem,

1. This implies that T (0, t) = T0 + rt.
(We can check that at t = 0, we have T = T0, and that dT (0,t)

dt = r. Alternatively, we can solve this
ODE dT (0,t)

dt = r with boundary condition T (0, 0) = T0.)

2. Tx(L, t) = 0 for all t > 0 (this can be understood using Fick’s law with q = 0).
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6 Discussion 6.

All functions have sufficient smoothness as required, unless stated otherwise.

Maximum Principle for 1D-diffusion equation.

Consider the 1D−diffusion equation on a bounded spatial domain as described mathematically below.
ut(x, t) = Duxx(x, t) in [a, b]× (0,∞),

u(x, 0) = ϕ(x) on [a, b]× {t = 0},
u(a, t) = f(t) for t ≥ 0,

u(b, t) = g(t) for t ≥ 0.

(194)

Consider solving u(x, t) on a closed bounded subset of [a, b] × (0,∞); that is, for (x, t) ∈ [a, b] × [0, T ]. Then,
the maximum principle states that the maximum value of u(x, t) is attained on either x = a, x = b or t = 0.
Mathematically,

max
(x,t)∈[a,b]×[0,T ]

u(x, t) = max
(x,t)∈[a,b]×[0,T ]

{ϕ(x), f(t), g(t)}

= max

{
max
x∈[a,b]

ϕ(x), max
t∈[0,T ]

f(t), max
t∈[0,T ]

g(t)

}
.

(195)

Here are some remarks on the maximum principle (relevant for this class):

• The minimum principle can be derived from the maximum principle. To see this, apply the maximum
principle to −u as follows. By linearity of the given diffusion equation in (194), we have

(−u)t(x, t) = D(−u)xx(x, t) in [a, b]× (0,∞),

(−u)(x, 0) = −ϕ(x) on [a, b]× {t = 0},
(−u)(a, t) = −f(t) for t ≥ 0,

(−u)(b, t) = −g(t) for t ≥ 0.

(196)

Apply maximum principle to u to obtain

max
(x,t)∈[a,b]×[0,T ]

−u(x, t) = max

{
max
x∈[a,b]

−ϕ(x), max
t∈[0,T ]

−f(t), max
t∈[0,T ]

−g(t)
}

− min
(x,t)∈[a,b]×[0,T ]

u(x, t) = max

{
− min

x∈[a,b]
ϕ(x),− min

t∈[0,T ]
f(t),− min

t∈[0,T ]
g(t)

}
= −min

{
min

x∈[a,b]
ϕ(x), min

t∈[0,T ]
f(t), min

t∈[0,T ]
g(t)

}
min

(x,t)∈[a,b]×[0,T ]
u(x, t) = min

{
min

x∈[a,b]
ϕ(x), min

t∈[0,T ]
f(t), min

t∈[0,T ]
g(t)

}
.

(197)

Here, we have used some mathematical properties of max and min, mainly, maxD(−u) = −minD(u)
for any function u and the corresponding subset of the function’s domain, D; and max{−a,−b,−c} =
−min{a, b, c} for any real numbers a, b, and c.

• For this class, it is only required for you to know the maximum principle on bounded domains (ie basically,
(x, t) ∈ [a, b] × [0, T ]). If the spatial domain is not bounded, then you can’t apply the maximum
principle. Most, if not all, of the problems given would be the 1D−diffusion equation on bounded
domains. You just have to know how to apply both the maximum and minimum principle.

• What if the spatial domain (ie in x) is bounded, but the temporal domain (ie in t) is not? Maximum
principle still holds, and is given by (modified from (195)) 11

max
(x,t)∈[a,b]×[0,∞)

u(x, t) = max

{
max
x∈[a,b]

ϕ(x), max
t∈[0,∞)

f(t), max
t∈[0,∞)

g(t)

}
. (198)

11This can be proven looking at a closed bounded domain [a, b] × [0, T ] for an arbitrary T , and noting that the argument is somewhat
independent of T . Thus, we can send T to infinity to conclude.
Note: To be mathematically prudent, one should note that if we are taking the max over a domain that is not closed, it is possible that the
maximum does not exist on such a domain. (Recall that on a closed subset of R, the maximum of a continuous function exists by Extreme
Value Theorem; this is not guaranteed to exist in the same subset of R if it is not closed.) Thus, if you have taken the 131 series, it suffices
to think of max as sup. If not, I would suggest that you don’t have to bog yourself down with such details.
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• Understanding the proof of the maximum principle is somewhat optional (as seen from Homework 5 that
it is actually just an optional problem). For students who are interested in analysis of PDEs, feel free to
attempt the optional problem on the homework. The method of attack for that problem would be inspired
from the proof of maximum principle as covered in Lecture 11.

Example 46. (Strauss 2.3 Exercise 4 Modified.) Consider the diffusion equation given by
ut(x, t) = uxx(x, t) in [0, 1]× (0,∞),

u(x, 0) = 4x(1− x) on [0, 1]× {t = 0},
u(0, t) = 0 for t ≥ 0,

u(1, t) = 0 for t ≥ 0.

(199)

Prove that 0 ≤ u(x, t) ≤ 1 for all (x, t) ∈ [0, 1]× [0,∞).

Suggested Solution:
By the maximum principle, we have

max
(x,t)∈[0,1]×[0,∞)

u(x, t) = max

{
max
x∈[0,1]

4x(1− x), max
t∈[0,∞)

0, max
t∈[0,∞)

0

}
. (200)

One can compute maxx∈[0,1] 4x(1 − x) using techniques from single variable calculus (Math 31A). Let
ϕ(x) = 4x(1 − x) on x ∈ [0, 1]. Then, at the maximum point, we have ϕ′(x) = 4 − 8x = 0. Thus, x = 1

2
corresponds to a critical point. One can check that ϕ′′(x) = −8 < 0 so this is a local maximum point. To
compute the global maximum, we compare the value of ϕ at the local maximum and at the boundary:

• ϕ
(
1
2

)
= 1,

• ϕ(0) = 0, and

• ϕ(1) = 0.

Thus, maxx∈[0,1] 4x(1−x) = 1. As an added bonus, we also have that minx∈[0,1] 4x(1−x) = 0 (ie we just
have to compare the values of ϕ at the boundary points and pick the lower value; in this case, they are
both 0). Hence, we have

max
(x,t)∈[0,1]×[0,∞)

u(x, t) = max

{
max
x∈[0,1]

4x(1− x), max
t∈[0,∞)

0, max
t∈[0,∞)

0

}
= max {1, 0, 0} = 1.

(201)

This implies that u(x, t) ≤ 1 for all (x, t) ∈ [0, 1]× [0,∞).

To show that u(x, t) ≥ 0, we will instead try to apply the minimum principle. This is given by

min
(x,t)∈[0,1]×[0,∞)

u(x, t) = min

{
min

x∈[0,1]
4x(1− x), min

t∈[0,∞)
0, min

t∈[0,∞)
0

}
= min {1, 0, 0} = 0.

(202)

This immediately implies that u(x, t) ≥ 0 for all (x, t) ∈ [0, 1]× [0,∞) and we are done.
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Similarity Solutions.

One possible way to derive the fundamental solution (which we will define in a mathematically rigorous sense
a little later) would be via constructing a similarity solution. This idea is inspired from Physics, in which by
using simple dimensional analysis, one can “guess” the form in which the solution should take to construct a
solution to the given PDE. Instead of outlining the general steps required, it is easier to look at an example as
shown below.

Example 47. A heated plate lies along the positive x−axis, and air flows over the plate in the
x−direction. There is a simple shear flow above the plate. Assume that the plate surface is at a temper-
ature T0. Thus, for x > 0 and y > 0, the temperature field T (x, y) above the plate is given by

γyTx(x, y) = DTyy(x, y). (203)

Here, γ (the shear rate), and D (diffusivity), and T0 are constants. Assume that at x = 0 the air is at
ambient temperature T (0, y) = 0, while on the surface of the plate, we have T (x, 0) = T0 and far from
the plate, we have T (x,∞) = 0.

(i) Find a functional form to the PDE of the form T (x, y) = a(x)f
(

y
L(x)

)
. Here, finding the functional

form means explicitly finding a(x) and L(x), and deriving an ODE for f(η) with η = y
L(x) .

(ii) By deriving the corresponding boundary conditions for the ODE and solving the ODE for f , deter-
mine the similarity solution T (x, y) to the above PDE for x, y ≥ 0.

Suggested Solution:

Understanding the requirements of the question.

When we would like to find a similarity solution of the form T (x, y) = a(x)f
(

y
L(x)

)
, note that we are

usually assuming that η = y
L(x) is unitless/dimensionless, so η represents a dimensionless variable.

This also implies that f
(
η = y

L(x)

)
is a function of a dimensionless variable, and thus dimensionless!

Here, we denote [X] to mean the “units of X”.
One should note that although physically, x and y are spatial coordinates for this question and represents
the same physical unit (of length), we shall assume for generalizability that they are “different”.

Step 1: Determine the functional form of L(x) by determining the
units of y in terms of x and other physical constants.

This is because as mentioned, η = y
L(x) is unitless, so [y] = [L]. Thus, to determine the units of L, it

suffices to determine the units of y.

From the PDE, we have
[γyTx] = [DTyy]

[γ][y][T ]

[x]
=

[D][T ]

[y]2

[y] =

(
[D][x]

[γ]

) 1
3

.

(204)

This implies that [L] =
(

[D][x]
[γ]

) 1
3

, and thus, it makes physical sense to postulate

L(x) =

(
Dx

γ

) 1
3

. (205)

Step 2: Use the auxiliary (initial/boundary/conservation of mass) condition
to determine the functional form of a(x).
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For this question, we are given the boundary condition T (x, 0) = T0. Substitute this into the form of our
similiary solution, we have

T (x, 0) = a(x)f

(
0

L(x)

)
= a(x)f(0) = T0 (206)

Without loss of generalitya, we set f(0) = 1, and deduce that a(x) = T0 for all x ≥ 0.

Step 3: Derive the corresponding ODE for f .
Reaping our achievements in the previous two steps, we have

T (x, y) = T0f

 y(
Dx
γ

) 1
3

 = T0f(η) (207)

with η(x, y) = y

(Dx
γ )

1
3

= yγ
1
3D− 1

3x−
1
3 . Now, we have to compute Tx and Tyy using Chain rule, as

described below:

• ∂
∂xT (x, y) = T0

∂
∂xf(η(x, y)) = T0f

′(η(x, y))∂η(x,y)∂x = − 1
3T0f

′(η(x, y))yγ
1
3D− 1

3x−
4
3 .

• ∂
∂yT (x, y) = T0

∂
∂yf(η(x, y)) = T0f

′(η(x, y))∂η(x,y)∂y = T0f
′(η(x, y)).γ

1
3D− 1

3x−
1
3

•

∂2

∂y2
T (x, y) =

∂

∂y

(
∂

∂y
T (x, y)

)
=

∂

∂y
(T0f

′(η(x, y))γ
1
3D− 1

3x−
1
3 )

= T0γ
1
3D− 1

3x−
1
3
∂

∂y
(f ′(η(x, y))) = T0γ

1
3D− 1

3x−
1
3 f ′′(η(x, y))

∂η(x, y)

∂y

= T0γ
2
3D− 2

3x−
2
3 f ′′(η(x, y)).

Substitute these back to the PDE, we get (here, f ′ represents f ′(η) and etc.)

γyTx = DTyy

γy

(
−1

3

)
T0f

′yγ
1
3D− 1

3x−
4
3 = DT0γ

2
3D

2
3x−

2
3 f ′′

−1

3

(
y2γ

2
3

D− 2
3x

2
3

)
f ′ = f ′′

−η
2

3
f ′(η) = f ′′(η).

(208)

Thus, we have obtained an ODE for f .
Remark: If your choice of L(x) and a(x) are correct, then the above must reduce to an ODE. If you can’t
cancel the physical constants such that you get just terms in η, you might have made a mistake in your
choice of L(x) and/or a(x).

Step 4: Determine the corresponding boundary conditions for your ODE in f . The following shows the
corresponding conversion of the given auxiliary boundary conditions to the corresponding boundary
conditions for the ODE in f :

• T (x, 0) = T0 → T (x, 0) = a(x)f(0) = T0f(0) = T0. This implies that f(0) = 1.

• T (0, y) = T0f
(

y
L(0)

)
= T0f

(
y
0

)
= 0. This implies that limη→∞ f(η) = 0 (ie “f(∞) = 0”).

• T (x,∞) = T0f
(

∞
L(x)

)
= 0. This also implies that limη→∞ f(η) = 0 (ie “f(∞) = 0”).

Step 5: Solve the given ODE: Let g(η) = f ′(η). This implies that we have

g′(η) = −η
2

3
g(η). (209)
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One can solve this by separation of variables as follows:

dg

dη
= −η

2

3
g

1

g

dg

dη
= −η

2

3∫
1

g
dg =

∫
−η

2

3
dη

ln |g| = −η
3

6
+ C

g(η) = Ae−
η3

6 .

(210)

Here, A = ±eC is an arbitrary constant. Now, substitute back f ′(η) = g(η) to obtain

f ′(η) = Ae−
η3

6 . (211)

Recall that f(0) = 1, so we can use the Fundamental theorem of Calculus by integrating the above ODE
with respect to η starting from 0. This yields∫ η

0

f ′(ξ)dξ =

∫ η

0

Ae−
ξ3

6 dξ

f(η)− f(0) = A

∫ η

0

e−
ξ3

6 dξ

f(η) = 1 +A

∫ η

0

e−
ξ3

6 dξ.

(212)

Using the other boundary condition, ie f(∞) = 0, we have

0 = 1 +A

∫ ∞

0

e−
ξ3

6 dξ

A =
−1∫∞

0
e−

ξ3

6 dξ
.

(213)

This implies that we have

f(η) = 1−
∫ η

0
e−

ξ3

6 dξ∫∞
0
e−

ξ3

6 dξ

f

 y(
Dx
γ

) 1
3

 = 1−
∫
 y

(Dx
γ )

1
3


0 e−

ξ3

6 dξ∫∞
0
e−

ξ3

6 dξ
.

(214)

The final similarity solution for the PDE is thus given by

T (x, y) = T0f(η(x, y))

= T0

1−
∫
 y

(Dx
γ )

1
3


0 e−

ξ3

6 dξ∫∞
0
e−

ξ3

6 dξ

 .
(215)

aIt really is. To see that it is the case, try setting f(0) = 2 and see if the final solution derived for the PDE changes.
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Remark: In Step 2, if the condition given is in the form of a conservation of mass of some sort, say∫
T (x, y)dx = κ (216)

for all y, we can obtain a(x) via dimensional analysis. Note that an integral represents the sum of product of T
and x, so

[T ][x] = [κ]

[a] = [T ] =
[κ]

[x]

(217)

This suggest using a(x) of the form
a(x) =

κ

x
. (218)

For this case, the actual scaling constant of a(x) will be captured by the value of f(0) or by employing relevant
initial conditions etc.

If the final unit that you’ve obtained is dependent on both x and y but you need a(x), recall that you have
[y] = f([x]) from (205).
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Fundamental Solutions to the 1D−Diffusion/Heat Equation.
Consider the 1D−diffusion equation on (an unbounded spatial domain) R as described mathematically below.{

ut(x, t) = Duxx(x, t) in R× (0,∞),

u(x, 0) = ϕ(x) on R× {t = 0}.
(219)

We say that u(x, t) = S(x, t) is the fundamental solution12 to (219) if

• St(x, t) = DSxx(x, t) for all x ∈ R, t > 0 (inequality is strict here), and

•
∫∞
−∞ S(x, 0) dx = 1. (This follows from conservation of mass, as

∫∞
−∞ S(x, t) = 1 for all t > 0.)

It has been derived in lecture that S(x, t) takes the form

S(x, t) =
1√
4πDt

e−
x2

4Dt (220)

for t > 0. Now, note that S(x, t) might not solve (219) for any given initial data u(x, 0) = ϕ(x). Instead, one
can derive the following solution to (219):

u(x, t) =

∫ ∞

−∞
S(x− y, t)ϕ(y) dy. (221)

This will be helpful in trying to solve variants of the 1D−diffusion equation in R× [0,∞).

12As mentioned in the lectures, there is a slightly more rigorous way to define this with the notion of a dirac delta distribution. For this
class, we shall not do so, and work with the definition below.
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Example 48. Solve the following PDEs for u(0, t), for t > 0:

(i) {
ut(x, t) = 2022uxx(x, t) in R× (0,∞),

u(x, 0) = x on R× {t = 0}.
(222)

(ii) {
ut(x, t) = 3uxx(x, t) in R× (0,∞),

u(x, 0) = x2 on R× {t = 0}.
(223)

Suggested Solution:
(i) Using the source solution formula in (221) with D = 2022, we have for any t > 0,

u(x, t) =

∫ ∞

−∞
S(x− y, t)ϕ(y) dy

=

∫ ∞

−∞

1√
8088πt

e−
|x−y|2
8088t y dy

u(0, t) =
1√

8088πt

∫ ∞

−∞
e−

y2

8088t y dy

= − 4044t√
8088πt

∫ ∞

−∞

(
−y

4044t

)
e−

y2

8088t dy

= − 4044t√
8088πt

∫ ∞

−∞

d

dy
e−

y2

8088t dy by reverse chain rule

= − 4044t√
8088πt

e−
y2

8088t |y=∞
y=−∞ by Fundamental Theorem of Calculus

= 0.

(224)

(i) Using the source solution formula in (221) with D = 3, we have for any t > 0,

u(x, t) =

∫ ∞

−∞
S(x− y, t)ϕ(y) dy

=

∫ ∞

−∞

1√
12πt

e−
|x−y|2

12t y2 dy

u(0, t) =
1√
12πt

∫ ∞

−∞
e−

y2

12t y2 dy

=
−6t√
12πt

∫ ∞

−∞

(
−2y

12t

)
e−

y2

12t y dy

=
−6t√
12πt

∫ ∞

−∞

(
d

dy
e−

y2

12t

)
y dy by reverse chain rule

=
−6t√
12πt

(
e−

y2

12t y|y=∞
y=−∞ −

∫ ∞

−∞
e−

y2

12t dy

)
by integration by parts

=
6t√
12πt

∫ ∞

−∞
e−

y2

12t dy boundary terms vanish

= 6t

∫ ∞

−∞

1√
12πt

e−
y2

12t dy

= 6t.

(225)

Note that the boundary term vanishes since the exponential term e−
y2

12t goes to 0 as y → ±∞ faster

than any polynomial, and thus e−
y2

12t y → 0 as y → ±∞. The last equality comes from the fact that as a
fundamental solution, we have ∫ ∞

−∞

1√
4πDt

e−
|x−y|2
4Dt dy = 1 (226)

for all x ∈ R, t > 0. We shall use this formula for x = 0 and D = 3 to obtain
∫∞
−∞

1√
12πt

e−
y2

12t = 1.
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Remark: (Optional for those without a background in probability theory, ie Math 170E.)

As you might have noticed, ∫ ∞

−∞

1√
8088πt

e−
|x−y|2
8088t y dy

=

∫ ∞

−∞

1√
2π(

√
4044t)2

e
− |x−y|2

2(
√

4044t)2 y dy

=

∫ ∞

−∞

1√
2πσ2

e−
|y−µ|2

2σ2 y dy

= E(X), X ∼ N(µ, σ2) = N(x, (
√
4044t)2) = N(x, 4044t).

(227)

Thus, the above expression in (i) (without substituting x = 0) refers to evaluating the mean of a normal
distribution with mean x and variance 4044t. For our case, since X ∼ N(0, 4044t), it is indeed expected that
E(X) = 0, as an elementary fact from Math 170E. Similarly, we can see that∫ ∞

−∞

1√
12πt

e−
|x−y|2

12t y2 dy

= E(X2), X ∼ N(µ, σ2) = N(x, 6t).

= Var(X)− E(X)2.

(228)

The last equality follows from a standard property for expectation and variance, mainly,

Var(X) = E(X2)− E(X)2. (229)

For our case, we have X ∼ N(0, 6t), thus E(X) = 0. The integral evaluated in (ii) corresponds to asking for the
variance of X with mean 0. This is nothing but 6t.
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Example 49. Derive a formula for source solution for the 1D−diffusion equation (with D > 0, a con-
stant) with an additional source term, given by{

ut(x, t) = Duxx(x, t) + t2 in R× (0,∞),

u(x, 0) = ϕ(x) on R× {t = 0}.
(230)

Suggested Solution: An observation to note is that if one shifts the t2 term to the left, we have

ut − t2 = Duxx(
u− t3

3

)
t

= Duxx(
u− t3

3

)
t

= D

(
u− t3

3

)
xx

.

(231)

The last equality comes from the fact that the partial derivatives in x are linear, and that − t3

3 is indepen-
dent of x and thus vanishes. This suggests the use of the following substitution:

v(x, t) = u(x, t)− t3

3
. (232)

The new PDE in v(x, t) can be obtained directly from above. The new initial condition can be evaluated
using the subsitution as follows:

v(x, 0) = u(x, 0)− 03

3
= u(x, 0) = ϕ(x). (233)

We thus now have {
vt(x, t) = Dvxx(x, t) in R× (0,∞),

v(x, 0) = ϕ(x) on R× {t = 0}.
(234)

Now, we can apply the source formula (221) for the solution to the above 1D−diffusion equation on R
to obtain

v(x, t) =

∫ ∞

∞
S(x− y, t)ϕ(y) dy. (235)

Substituting v back for u, we have for (x, t) ∈ R× (0,∞),

u(x, t) =
t3

3
+

∫ ∞

∞
S(x− y, t)ϕ(y) dy. (236)

Here, S(x, t) for any x ∈ R, t > 0, is given in (220).
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7 Discussion 7.

All functions have sufficient smoothness as required, unless stated otherwise.

Comparing Transport, Diffusion and Wave Equations.

Recall that the relevant PDEs are given by

• Transport Equation (or just First Order PDEs) ut(x, t) + a(x, t)ux(x, t) = b(x, t),

• Diffusion Equation ut(x, t) = Duxx(x, t), and

• Wave Equation utt(x, t) = c2uxx(x, t).

Key phenomena:

• Transport equation corresponds to “transporting” material (with density described by u) along character-
istic curves with speed dx

dt = a(x, t).

• Diffusion equation smoothen out any initial data with infinite speed of propagation. This can be seen from
the solution to the initial value problem, where

u(x, t) =
1√
4πDt

∫ ∞

−∞
e−

|x−y|2
4Dt ϕ(y)dy

is smooth even if ϕ(y) is discontinuous!13

• Diffusion equation obeys maximum (minimum) principle.

• Wave equation has solutions in which the speed of propagation is finite, at c. This can be seen from the
d’Alembert’s solution, given by

u(x, t) =
1

2
(ϕ(x+ ct) + ϕ(x− ct)) +

1

2c

∫ x+ct

x−ct

ψ(y)dy.

For instance, in Homework 4 Exercise 3 in which ϕ(x) = 1−|x| if |x| < 1 and 0 if otherwise, and ψ(x) = 0,
we have deduced using the spacetime diagram that the string at x = 3 first starts to move at t = 2 when
c = 1, and u(3, t) = 0 is zero for any time 0 ≤ t < 2.

The list above is not exhaustive, and draws knowledge from your exposure in these types of equations in lectures
from the past weeks.

13From a mathematical analysis point of view, the smoothness of this function can be proven by literally taking limits u(x+∆x)−u(x)
∆x

as
∆x→ 0.
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Example 50. Let u(x, t) model the density of some sort of particle, with x ∈ R and t > 0. For the sec-
narios given below, explain whether the information supports the density of the particle being modeled
using

(i) A transport equation,

(ii) A diffusion equation, or

(iii) A wave equation.

Explain each of your answers briefly. In some cases, more than one type of equation may be appropriate.

(a) A sharp disturbance at x = 0 at time t = 0 is captured by two detectors placed at x = −10m and
x = 10m only at time t = 5s.

Suggested Solution :

(a)(i) The transport equation is not appropriate for this case, as we should expect the disturbance to be
detected only on one of the detector (along a characteristic curve).

(ii) The diffusion equation is not appropriate, as it smoothens out any initial data (and thus distur-
bances), and thus, the disturbance should not only be captured by detectors that are significantly far
apart, and only at a specific time.

(iii) Yes of course, as this follows immediately from d’Alembert’s formula! In fact, one can deduce
that the value of u detected at each detector will be exactly half of the value that it started out with.
Furthermore, we can also determine the speed of propagation, that is, c = 10m

5s = 2 m s−1.
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Solving Diffusion and Wave Equations on the Half-Line.

For this section of the supplement, we shall consider solving the diffusion and wave equations on the half line.
As the homework questions relating to these concepts are theoretical in nature, so would the focus on this part
of the supplement be. We will end off by throwing in a computational example as an exercise towards the end.

First, we consider the diffusion equation on the half-line with u(x, 0) = ϕ(x). Mathematically, this is given by
ut(x, t) = Duxx(x, t) in [0,∞)× (0,∞),

u(0, t) = 0 on {x = 0} × [0,∞),

u(x, 0) = ϕ(x) on [0,∞)× {t = 0}.
(237)

By odd extension, we can consider extending u(x, t) and its initial data ϕ(x) for x < 0. We then obtain the
solution for x ≥ 0 simply by restricting the final solution to x ≥ 0. Mathematically, solving (237) is equivalent
to solving {

ut(x, t) = Duxx(x, t) in R× (0,∞),

u(x, 0) = ϕodd(x) on R× {t = 0},
(238)

where

ϕodd(x) =


ϕ(x) for x > 0,

−ϕ(−x) for x < 0,

0 for x = 0.

(239)

Using our fundamental solution, we can then obtain solution to (238) by

u(x, t) =

∫ ∞

−∞
S(x− y, t)ϕodd(y)dy

=

∫ ∞

0

S(x− y, t)ϕodd(y)dy +

∫ 0

−∞
S(x− y, t)ϕodd(y)dy

=

∫ ∞

0

S(x− y, t)ϕ(y)dy −
∫ 0

−∞
S(x− y, t)ϕ(−y)dy

=

∫ ∞

0

S(x− y, t)ϕ(y)dy +

∫ 0

∞
S(x+ y, t)ϕ(y)dy using substitution y 7→ −y

=

∫ ∞

0

(S(x− y, t)− S(x+ y, t))ϕ(y)dy.

(240)

Now, we can just evaluate this function for any given x ≥ 0.

Remark: For Neumann boundary conditions, consider an even extension; ie,

ϕeven(x) =


ϕ(x) for x > 0,

ϕ(−x) for x < 0,

0 for x = 0.

(241)
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Another Remark: A possible aid to understand even and odd extensions -

• For odd extensions, one can check that the new solution u(x, t) is odd in x (ie if u(x, t) satisfies the PDE,
then −u(−x, t) satisfies the PDE too), for any t ≥ 0. Then, we recall that any odd function f(x) must
satisfy f(0) = 0.14 This thus implies that u(0, t) = 0 for any t ≥ 0.
In particular, u(x, 0) = ϕ(x) must be odd, and thus, this indicates that we might employ an odd extension
(reflection) here.

• For even extensions, one can check that the new solution u(x, t) is even in x (ie if u(x, t) satisfies the PDE,
then −u(x, t) satisfies the PDE too), for any t ≥ 0. Then, we recall that any even function f(x) must
satisfy f ′(0) = 0.15This implies that ux(0, t) = 0 is satisfied for all t ≥ 0 (corresponding to the Neumann
boundary condition at x = 0).
In particular, u(x, 0) = ϕ(x) must be even, and thus, this indicates that we might employ an even extension
here.

Using a similar idea, we can solve the wave equation on the half line with values on the boundary x = 0 to be
0. Mathematically, this is given by

utt(x, t) = c2uxx(x, t) in [0,∞)× (0,∞),

u(0, t) = 0 on {x = 0} × [0,∞),

u(x, 0) = ϕ(x) on [0,∞)× {t = 0},
ut(x, 0) = ψ(x) on [0,∞)× {t = 0}.

(242)

Recognize that we are given the Dirichlet boundary condition (u(0, t) = 0 for all t ≥ 0) on x = 0, we consider
the odd extension for both ϕ and ψ. Thus, solving (242) is equivalent to solving

utt(x, t) = c2uxx(x, t) in [0,∞)× (0,∞),

u(x, 0) = ϕodd(x) on [0,∞)× {t = 0},
ut(x, 0) = ψodd(x) on [0,∞)× {t = 0},

(243)

in which d’Alembert’s solution yields

u(x, t) =
1

2
(ϕodd(x+ ct) + ϕodd(x− ct)) +

1

2c

∫ x+ct

x−ct

ψodd(y)dy. (244)

Using a similar argument as for the diffusion equation (by unpacking the “oddness” in the function), one should
be able to obtain

u(x, t) =

{
1
2 (ϕ(x+ ct) + ϕ(x− ct)) + 1

2c

∫ x+ct

x−ct
ψ(y)dy for x > c|t|

1
2 (ϕ(ct+ x)− ϕ(ct− x)) + 1

2c

∫ ct+x

ct−x
ψ(y)dy for 0 < x < c|t|

(245)

While unpacking, for instance for ϕodd, it might be helpful to think of cases in which the argument is positive
and negative. This should yield the two separate cases as seen from above. (For more details, see Strauss’s
derivation/Marcus’s derivation from 6.2.pdf.)

Intuitively, the solution for x > c|t| does not have to rely on the method of odd extension/reflection about the
boundary x = 0, so it follows from d’Alembert’s formula. For 0 < x < c|t|, this is reached by waves going to the
left and hitting the boundary x = 0, and then reflected upwards to arrive at this domain. The reflection of wave
about x = 0 introduces an additional negative sign (as seen in the negative sign in front of the term ϕ(ct − x),
corresponding to waves going to the left at speed c; contribution from ψ is more subtle).
The exact details for dealing with Neumann boundary conditions at x = 0 will be the theme for Exercises 3 and
4 in Homework 6.

14Proof: If f is odd, then f(x) = −f(−x) for all x ≥ 0. In particular, we must have f(0) = −f(−0) = −f(0), which implies 2f(0) = 0
and thus f(0) = 0.

15Proof: If f is even, then f(x) = f(−x) for all x ≥ 0. Taking derivatives on both sides, we have f ′(x) = −f ′(−x). In particular, we
must have f ′(0) = −f ′(−0) = −f ′(0), which implies 2f ′(0) = 0 and thus f ′(0) = 0.
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Example 51. (Strauss 3.1.1.) Solve u(x, t) on the half-line (ie x > 0, t > 0), for
ut(x, t) = kuxx(x, t) in (0,∞)× (0,∞),

u(0, t) = 0 on {x = 0} × [0,∞),

u(x, 0) = e−x on (0,∞)× {t = 0}.
(246)

Suggested Solution :

Using the formula as derived from (240), we have

u(x, t) =

∫ ∞

0

(S(x− y, t)− S(x+ y, t))ϕ(y)dy

=
1√
4πkt

∫ ∞

0

(
e−

(x−y)2

4kt − e−
(x+y)2

4kt

)
e−ydy.

(247)

The first integral can be evaluated as follows:∫ ∞

0

e−
(x−y)2

4kt −ydy

=

∫ ∞

0

e−
x2−2xy+y2+4kyt

4kt dy

= e−
x2

4kt

∫ ∞

0

e−
y2−2(x−2kt)y

4kt dy

= e−
x2

4kt

∫ ∞

0

e−
(y−(x−2kt))2+(x−2kt)2

4kt dy

= e−
x2−(x−2kt)2

4kt

∫ ∞

0

e−
(y−(x−2kt))2

4kt dy

= e−
(2kt)(2x−2kt)

4kt

∫ ∞

−(x−2kt)

e−
z2

4kt dz using z = y − (x− 2kt)

= ekt−x
√
4kt

∫ ∞

− (x−2kt)√
4kt

e−w2

dw using w =
z√
4kt

=
√
πktekt−x 2√

π

∫ ∞

− (x−2kt)√
4kt

e−w2

dw

=
√
πktekt−xerfc

(
− (x− 2kt)√

4kt

)
.

(248)

Here, the error function (erf) and the complementary error function (erfc) is given by

erf(z) =
2√
π

∫ z

0

e−t2dt, erfc(z) =
2√
π

∫ ∞

z

e−t2dt, (249)

and notice that erf(z)+erfc(z) = 1 for any z ∈ R. These are special functions in which cannot be written
as an explicit formula of known functions. Similarly, one can show that for the second integral, it is given
by ∫ ∞

0

e−
(x−y)2

4kt +ydy

=
√
πktekt+x

(
1 + erf

(
(x+ 2kt)√

4kt

))
.

(250)

Thus, the solution is given by

u(x, t) =
1

2
ekt−xerfc

(
− (x− 2kt)√

4kt

)
+

1

2
ekt+x

(
1 + erf

(
(x+ 2kt)√

4kt

))
. (251)
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Green’s Function for ODEs.
Before we begin, let us start with some “distributional” calculus, ie calculus involving the Heaviside-step func-
tion and Dirac-delta “functions”. These can be made rigorous with the help of distribution theory, which we will
not cover in this class.16

The Dirac-delta function δ(x) is defined such that δ(x) = 0 for all x ̸= 0, “undefined/∞ for x = 0”, and∫∞
−∞ δ(x)dx = 1. This corresponds to a “spike function” at x = 0. Since δ(x) is defined and is 0 for x ̸= 0, we

deduce that for all a < 0 and b > 0, we have ∫ b

a

δ(x)dx = 1

(can be understood by removing an integral of value 0).

The Heaviside step function17 H(x) is defined such that

H(x) =

{
1 for x > 0,

0 for x ≤ 0.
(252)

Now, convince yourself that
d

dx
H(x) = δ(x), (253)

or equivalently (with the use of the “Fundamental Theorem of Calculus”),18

H(x) =

∫ x

−∞
δ(s)ds. (254)

Once you have convinced yourself that (252) holds, then, consider the following. We define the ReLU function19

as

ReLU(x) =

{
x for x > 0,

0 for x < 0.
(255)

Then, we have
d2

dx2
ReLU(x) =

d

dx
H(x) = δ(x), (256)

or

ReLU(x) =
∫ x

−∞
H(s)ds. (257)

Thus, note that the use of this “ReLU(x)” function is not necessary for solving a first-order ODE with forcing term.

Here, δ(x), H(x) and ReLU(x) “measures” some level of discontinuity at the point of interest, say x = 0;

• ReLU(x) is continuous at x = 0, and thus any integral on some small interval with size going to 0 contain-
ing 0 will give 0,

• H(x) has a finite jump discontinuity, with an integral on some small interval with size going to 0 giving a
value of 0, and

• δ(x) has an “infinite” jump discontinuity such that the integral on some small interval with size going to 0
yielding a value of 1.

This is a key piece of intuition that we will use to derive some “continuity” condition as we attempt to solve
inhomogoneous ODEs (and PDEs).

16If you are interested, one can take Math 251A for a good coverage on a theory of distribution, or Math 266B for a sufficient coverage for
applied PDEs to be used to solve for “discontinuous” solutions. An amount equivalent to those covered in 266B is also covered in Strauss’s
Book, in Chapter 12.

17There are many conventions for this at x = 0; honestly, the value at 0 usually does not matter.
18When x < 0, the integral does not contain the origin, and thus gives a value of 0. However, when x > 0, the integral contains the

origin now, and by the aforementioned property of the integral of a δ-function, we have that this is 1.
19The name of this function is not important, but I would just like to point your attention to how this is named. You might find this

familiar if you took a class in Machine Learning, say Math 156! The intuition d
dx

ReLU(x) = H(x) is commonly used in signal processing.
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Example 52. Find the general solution to the ODE for t > 0 below:

dy(t)

dt
= ty(t) + f(t), y(0) = 1. (258)

Suggested Solution:

Step 1: Split the problem up so that the ODE to be solved has homogeneous boundary conditionsa.
By linearity, we can split the problem of solving the ODE in (258) into 2, namely,

dy1(t)

dt
= ty1(t), y1(0) = 1, (259)

and
dy2(t)

dt
= ty2(t) + f(t), y2(0) = 0. (260)

and see that y(t) = y1(t) + y2(t) thus solves (258).
(259) can be solved by separation of variables. This yields

y1(t) = Ae
t2

2 . (261)

Use the initial conditions y1(0) = 1 to obtain

y1(t) = e
t2

2 . (262)

Step 2: Construct ODE with forcing term and homogeneous boundary conditions for a slice of f(si)
with the help of delta functions.
Now, see that (260) is an easier problem to solve since we have the homogeneous boundary conditions.
We shall attempt to solve this with the help of a delta function. Consider a modified problem for a fixed
si > 0, with

dy2(t; si)

dt
= ty2(t; si) + ∆sf(si)δ(t− si), y2(0; si) = 0. (263)

Intuitively, we are decomposing the function f(t) by delta-spikes, ie f(t) = lim∆s→0 f(si)δ(t − si)∆s.
This is explained again in more details in Step 4.
Furthermore, ; si indicates that si is a parameter that the solution is dependent on. It also serves as a
reminder that the ODE that we are solving is not the original ODE for y2(t). For t ̸= si, δ(t − si) = 0.
Thus, we are asked to solve

dy2(t; si)

dt
= ty2(t; si), for t ̸= si, y2(0; si) = 0. (264)

For clarity, we shall denote the solution for y2(t; si) for 0 ≤ t < si by yL2 (t; si), and the solution for
y2(t; si) for t > si by yR2 (t; si).
Step 3: Solve this ODE with the help of “continuity” conditions.
For 0 ≤ t < si, we see that the solution is given by (we have solved the ODE without the boundary
condition in as in (261))

yL2 (t; si) = Be
t2

2 . (265)

Note that 0 ≤ t < si, so we can freely apply the boundary conditions at t = 0 (ie y2(0; si) = 0). This
should yield B = 0.

For t > si, we also have
yR2 (t; si) = Ce

t2

2 . (266)

This time round, we can’t use the boundary conditions given to us, since yR2 is solved for t > si, which
is away from 0 (does not include 0). Nonetheless, we can use the “jump conditions”, similar to those
derived in class in a heuristic manner. This comes from (263) (since come to think of it, we have not
used any information about the δ function except that it is 0 if the argument t − si is non-zero). This is
copied below:
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dy2(t; si)

dt
= ty2(t; si) + ∆sf(si)δ(t− si), y2(0; si) = 0 (267)

• The δ-type discontinuity on the right must be matched with either the dy2(t;si)
dt term or the y2(t; si)

term.

• If the δ-type discontinuity is placed on y2, this implies that the type of discontinuity dy2(t;si)
dt is

δ′(t − si) type, which is “super” singular, and more singular than δ(t − si) that we began with.
This can’t be matched with any other terms in (267). We then deduce that the δ-type discontinuity
cannot fall on y2 and must fall on dy2(t;si)

dt .

• If dy2(t;si)
dt ∼ δ(t − si), using our “distributional” calculus rule, we have y2(t; si) ∼ H(t − si), ie, a

jump discontinuity! To determine the value of this jump, we go back to (267) and integrate for t
going from si − ε to si + ε. We thus have∫ si+ε

si−ε

dy2(t; si)

dt
dt = t

∫ si+ε

si−ε

y2(t; si)dt+

∫ si+ε

si−ε

∆sf(si)δ(t− si)dt

[y2(t; si)]
s+i
s−i

= 0 +∆sf(si)

(268)

by sending ε→ 0, using “Fundamental Theorem of Calculus” in the first term, by the integral of H-
type discontinuity about its discontinuous point of y2 as ε→ 0 in the second term (see the remarks
above before this example), and noting that ∆s and f(si) are constants, plus

∫ si+ε

si−ε
δ(t− si)dt = 1

for any ε > 0.

Summarizing what we have obtained,

y2(t; si) =

{
yL2 (t; si) = 0 for 0 ≤ t < si

yR2 (t; si) = Ce
t2

2 for t > si
(269)

Now, we can apply our condition in (268) and solve for the corresponding value of C. This yields

Ce
s2i
2 = (∆s)f(si)

C = (∆s)e−
s2i
2 f(si).

(270)

Explicitly, we have that the solution is given by

y2(t; si) = ∆s

{
0 for 0 ≤ t < si

f(si)e
− s2i

2 + t2

2 for t > si
(271)

and we define

ỹ2(t; s) :=

{
0 for 0 ≤ t < si

f(si)e
− s2i

2 + t2

2 for t > si
(272)

so that y2(t; si) = (∆s)ỹ2(t; si).

Step 4: Construct the full solution to the ODE with the full f(s).

From (271), it seems that for a “spike-like” forcing term given by f(si)∆(s)δ(t− si), the solution is only
affected by it for t > si. Thus, for any given t, we only have to sum up the si’s from above till we reach
t, since any si before t will not affect the solution. Thus, we have

y2(t) =
∑
si<t

ỹ2(t; si)∆s. (273)

In the limit as ∆s→ 0, we have

y2(t) =

∫ t

0

ỹ2(t; s)ds. (274)
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Remark: Another way to think of it is that we retrieve the second ODE if we sum over these si, and
sending ∆s→ 0. In particular, from (263), summing over the i’s, we get

d

dt

∑
i

ỹ2(t; si)∆s = t
∑
i

ỹ2(t; si)∆s+
∑
i

f(si)δ(t− si)∆s (275)

so under the limit as ∆s goes to zero, we get

d

dt

∫ ∞

0

ỹ2(t, s)ds = t

∫ ∞

0

ỹ2(t; si)ds+

∫ ∞

0

f(s)δ(t− s)ds,

d

dt

∫ ∞

0

ỹ2(t, s)ds = t

∫ ∞

0

ỹ2(t; si)ds+ f(t)

d

dt
y2 = ty2 + f(t),

(276)

with y2 =
∫∞
0
ỹ2(t, s)ds. Then, use the fact that ỹ2 = 0 for s > t to reduce the integral to y2(t) =∫ t

0
ỹ2(t, s)ds.

Thus, we have the solution to (281), the original ODE, to be

y(t) = y1(t) + y2(t) = y1(t) +

∫ t

0

ỹ2(t; s)ds

= e
t2

2 +

∫ t

0

f(s)e−
s2

2 + t2

2 ds

= e
t2

2

(
1 +

∫ t

0

f(s)e−
s2

2 ds

) (277)

One can check that if we solve this equation (258) directly by integration factor, we should retrieve the
above solution.

aThat is, corresponding boundary conditions are the zero conditions.

Remark: If you are not comfortable with the approximation made in Step 4, here is an alternative way to think
about it. If we instead looked at (263) without the ∆s term, mainly

dy2(t; s)

dt
= ty2(t; s) + f(s)δ(t− s), y2(0; s) = 0, (278)

there is no need to factor out ∆s in (271). I have also dropped out the indices i since we are not doing
“Riemann-sum-like” approximations now.

From the form in (278), we can integrate with respect to s from 0 to infinity (since t > 0)20 to obtain

d

dt

∫ ∞

0

y2(t; s)ds = t

∫ ∞

0

y2(t; s)ds+

∫ ∞

0

f(s)δ(t− s)ds

d

dt

∫ ∞

0

y2(t; s)ds = t

∫ ∞

0

y2(t; s)ds+ f(t).

(279)

Thus, we see that y2(t) =
∫∞
0
y2(t; s)ds solves the ODE for y2 in (260) directly! Furthermore, we can also check

that y2(0) =
∫∞
0
y2(0; s)ds = 0 since y2(0; s) = 0 is the boundary condition that we imposed when we solve the

ODE for y2(t; s).

Then, from (271) (without the ∆s term since we did not include it in (279)), we see that y2(t; s) = 0 if t < s ie
s > t. This cuts off the integral domain from 0 < t <∞ to 0 < t < s. Hence, we have

y2(t) =

∫ t

0

y2(t; s)ds =

∫ ∞

0

y2(t; s)ds, (280)

thus retrieving back (274).
20At this point, since we started out being insufficiently rigorous with our “Fundamental Theorem of Calculus” and “Riemann-Sums”, I

don’t think we have to “justify” an interchange between the time derivative and the integral!
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I started out with this example, and quickly realized that it might be a little tedious. I have instead used the
example above instead. Nonetheless, feel free to take a look at this if you would like to understand how to
apply “distributional” calculus for higher order ODEs and see where “ReLU” is used.

Example 53. Find the general solution to the ODE for t > 0 below:

d2y(t)

dt2
= −y(t) + f(t), y(0) = 0, y′(0) = 1. (281)

Suggested Solution:

Step 1: Split the problem up so that the ODE to be solved has homogeneous boundary conditionsa.
By linearity, we can split the problem of solving the ODE in (281) into 2, namely,

d2y1(t)

dt2
= −y1(t), y1(0) = 0, y′1(0) = 1. (282)

and
d2y2(t)

dt2
= −y2(t) + f(t), y2(0) = 0, y′2(0) = 0. (283)

and see that y(t) = y1(t)+y2(t) thus solves (281). Recall that the solution to (282) is given by (see Math
33B notes for a recap on this; you might see this ODE again for an upcoming concept a few weeks later)

y1(t) = A cos(t) +B sin(t). (284)

Use the initial conditions y1(0) = 0 and y′1(0) = 1 to obtain two equations in A and B. Solving them,
one can obtain

y1(t) = sin(t). (285)

Step 2: Construct ODE with forcing term and homogeneous boundary conditions for a slice of f(si)
with the help of delta functions.
Now, see that (283) is an easier problem to solve since we have the homogeneous boundary conditions.
We shall attempt to solve this with the help of a delta function. Consider a modified problem for a fixed
si > 0, with

d2y2(t; si)

dt2
= −y2(t; si) + ∆sf(si)δ(t− si), y2(0; si) = 0, y′2(0; si) = 0. (286)

Here, ; si indicates that si is a parameter that the solution is dependent on. It also serves as a reminder
that the ODE that we are solving is not the original ODE for y2(t). For t ̸= si, δ(t− si) = 0. Thus, we are
asked to solve

d2y2(t; si)

dt2
= −y2(t; si), for t ̸= si, y2(0; si) = 0, y′2(0; si) = 0. (287)

For clarity, we shall denote the solution for y2(t; si) for 0 ≤ t < si by yL2 (t; si), and the solution for
y2(t; si) for t > si by yR2 (t; si).
Step 3: Solve this ODE with the help of “continuity” conditions.
For 0 ≤ t < si, we see that the solution is given by

yL2 (t; si) = C cos(t) +D sin(t). (288)

Note that 0 ≤ t < si, so we can freely apply the boundary conditions at t = 0 (ie y2(0; si) = y′2(0; si) = 0).
This should yield C = D = 0.

For t > si, we also have
yR2 (t; si) = E cos(t) + F sin(t). (289)

This time round, we can’t use the boundary conditions given to us, since yR2 is solved for t > si, which
is away from 0 (does not include 0). Nonetheless, we can use the “jump conditions”, similar to those
derived in class in a heuristic manner. This comes from (286) (since come to think of it, we have not
used any information about the δ function except that it is 0 if the argument t − si is non-zero). This is
copied below:
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d2y2(t; si)

dt2
= −y2(t; si) + ∆sf(si)δ(t− si), y2(0; si) = 0, y′2(0; si) = 0. (290)

• The δ-type discontinuity on the right must be matched with either the d2y2(t;si)
dt2 term or the y2(t; si)

term.

• If the δ-type discontinuity is placed on y2, this implies that the type of discontinuity d2y2(t;si)
dt2 is

δ′′(t − si) type, which is “super” singular, and more singular than δ(t − si) that we began with.
This can’t be matched with any other terms in (290). We then deduce that the δ-type discontinuity
cannot fall on y2 and must fall on d2y2(t;si)

dt2 .

• If d2y2(t;si)
dt2 ∼ δ(t − si), using our “distributional” calculus rule, we have dy2(t;si)

dt ∼ H(t − si) and
y2(t; si) ∼ ReLU(t− si) (or since ReLU is basically continuous at t = si, then y2(t; si) is continuous
at t = si).

• We thus obtain our first condition:

[y2(t; si)]
t=s+i
t=s−i

:= y2(s
+
i ; si)− y2(s

−
i ; si) = lim

s→s+i

y2(s; si)− lim
s→s−i

y2(s; si) = 0

lim
s→s+i

y2(s; si) = lim
s→s−i

y2(s; si).
(291)

• Next, we also know that dy2(t;si)
dt has a H(t − si) type discontinuity - ie, a jump discontinuity! To

determine the value of this jump, we go back to (290) and integrate for t going from si−ε to si+ε.
We thus have ∫ si+ε

si−ε

d2y2(t; si)

dt2
dt = −

∫ si+ε

si−ε

y2(t; si)dt+

∫ si+ε

si−ε

∆sf(si)δ(t− si)dt

[y′2(t; si)]
s+i
s−i

= 0 +∆sf(si)

(292)

by sending ε → 0, using “Fundamental Theorem of Calculus” in the first term, continuity of y2 in
the second term, and noting that ∆s and f(si) are constants, plus

∫ si+ε

si−ε
δ(t − si)dt = 1 for any

ε > 0. We thus obtain our second condition:

[y′2(t; si)]
s+i
s−i

= ∆sf(si)

lim
s→s+i

y′2(s; si) = lim
s→s−i

y′2(s; si) + ∆sf(si).
(293)

Summarizing what we have obtained,

y2(t; si) =

{
yL2 (t; si) = 0 for 0 ≤ t < si

yR2 (t; si) = E cos(t) + F sin(t) for t > si
(294)

Now, we can apply our conditions (291) and (293) to (294) and solve for the corresponding values of E
and F !
(291) yields

E cos(si) + F sin(si) = 0. (295)

(293) yields
− E sin(si) + F cos(si) = 0 +∆sf(si). (296)

Solving these, we obtain {
E = −∆sf(si) sin(si)

F = ∆sf(si) cos(si).
(297)

Explicitly, we have

y2(t; si) = ∆s

{
0 for 0 ≤ t < si

−f(si) sin(si) cos(t) + f(si) cos(si) sin(t) for t > si
(298)
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and we define

ỹ2(t; s) :=

{
0 for 0 ≤ t < si

−f(si) sin(si) cos(t) + f(si) cos(si) sin(t) for t > si
(299)

so that y2(t; si) = (∆s)ỹ2(t; si).

Step 4: Construct the full solution to the ODE with the full f(s).

From (298), it seems that for a “spike-like” forcing term given by f(si)∆(s)δ(t− si), the solution is only
affected by it for t > si. Thus, for any given t, we only have to sum up the si’s till we reach t, since any
si after t will not affect the solution. Thus, we have

y2(t) =
∑
si<t

ỹ2(t; si)∆s. (300)

In the limit as ∆s→ 0, we have

y2(t) =

∫ s

0

ỹ2(t; s)ds. (301)

Thus, we have the solution to (281), the original ODE, to be

y(t) = y1(t) + y2(t) = y1(t) +

∫ t

0

ỹ2(t; s)ds

= sin(t) +

∫ t

0

−f(s) sin(s) cos(t) + f(s) cos(s) sin(t)ds

= sin(t)

(
1 +

∫ t

0

f(s) cos(s)ds

)
− cos(t)

∫ t

0

f(s) sin(s)ds.

(302)

aThat is, corresponding boundary conditions are the zero conditions.
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8 Discussion 8.

All functions have sufficient smoothness as required, unless stated otherwise.

Inhomogeneous Problems.

Instead of re-deriving the relevant formulas, we shall compile the list of formulas that one should take away
with for this part of the content for 136.

Here, R = whole line, R+ = half line. The difference between homogeneous PDEs and inhomogeneous PDEs is
with the addition of a source term f(x, t) (independent of the unknown function u(x, t)).

Diffusion and Wave on R.

Diffusion on R Wave on R
Homogeneous i iii

Inhomogeneous ii iv

With

(i) Homogeneous, Diffusion on R. (Source Solution.){
ut(x, t) = Duxx(x, t) in R× (0,∞),

u(x, 0) = ϕ(x) on R× {t = 0}.
(303)

Solution: u(x, t) =

∫ ∞

∞
S(x− y, t)ϕ(y) dy, with S(z, t) = 1√

4πDt
e−

z2

4Dt .

(ii) Inhomogeneous, Diffusion on R. (Duhamel’s Principle.){
ut(x, t) = Duxx(x, t) + f(x, t) in R× (0,∞),

u(x, 0) = ϕ(x) on R× {t = 0}.
(304)

Solution: u(x, t) =

∫ ∞

∞
S(x− y, t)ϕ(y) dy +

∫ t

0

∫ ∞

−∞
S(x− y, t− s)f(y, s) dyds.

(iii) Homogeneous, Wave on R. (d’Alembert’s Solution.)
utt(x, t) = c2uxx(x, t) in R× (0,∞),

u(x, 0) = ϕ(x) on R× {t = 0},
ut(x, 0) = ψ(x) on R× {t = 0}.

(305)

Solution: u(x, t) =
1

2
(ϕ(x− ct) + ϕ(x+ ct)) +

1

2c

∫ x+ct

x−ct

ψ(y)dy.

(iv) Inhomogeneous, Wave on R. (Duhamel’s Principle.)
utt(x, t) = c2uxx(x, t) + f(x, t) in R× (0,∞),

u(x, 0) = ϕ(x) on R× {t = 0},
ut(x, 0) = ψ(x) on R× {t = 0}.

(306)

Solution:

u(x, t) =
1

2
(ϕ(x− ct) + ϕ(x+ ct)) +

1

2c

∫ x+ct

x−ct

ψ(y)dy +
1

2c

∫ ∫
∆

f(y, s) dyds.

=
1

2
(ϕ(x− ct) + ϕ(x+ ct)) +

1

2c

∫ x+ct

x−ct

ψ(y)dy +
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

f(y, s) dyds.
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Diffusion and Wave on R+.

Diffusion on R+ Wave on R+

Homogeneous v (Dirichlet), vi (Neumann) ix (Dirichlet), x (Neumann)
Inhomogeneous vii (Dirichelet), viii (Neumann) xi (Dirichlet), xii (Neumann)

(v) Homogeneous, Diffusion on R+, Dirichlet BC21.
ut(x, t) = Duxx(x, t) in (0,∞)× (0,∞),

u(0, t) = 0 on {x = 0} × [0,∞),

u(x, 0) = ϕ(x) on (0,∞)× {t = 0}.
(307)

Solution: Use odd extension, solve this on R, and use the resulting solution on x ∈ R to x ∈ R+.

u(x, t) =

∫ ∞

∞
S(x− y, t)ϕodd(y) dy .

(vi) Homogeneous, Diffusion on R+, Neumann BC.
ut(x, t) = Duxx(x, t) in (0,∞)× (0,∞),

ux(0, t) = 0 on {x = 0} × [0,∞),

u(x, 0) = ϕ(x) on (0,∞)× {t = 0}.
(308)

Solution: Use even extension, solve this on R, and use the resulting solution on x ∈ R to x ∈ R+.

u(x, t) =

∫ ∞

∞
S(x− y, t)ϕeven(y) dy .

(vii) Inhomogeneous, Diffusion on R+, Dirichlet BC. (Duhamel’s Principle.)
ut(x, t) = Duxx(x, t) + f(x, t) in (0,∞)× (0,∞),

u(0, t) = 0 on {x = 0} × [0,∞),

u(x, 0) = ϕ(x) on (0,∞)× {t = 0}.
(309)

Solution: Use odd extension, solve this on R, and use the resulting solution on x ∈ R to x ∈ R+.

u(x, t) =

∫ ∞

∞
S(x− y, t)ϕodd(y) dy +

∫ t

0

∫ ∞

−∞
S(x− y, t− s)fodd in x(y, s) dyds. .

(viii) Inhomogeneous, Diffusion on R+, Neumann BC. (Duhamel’s Principle.)
ut(x, t) = Duxx(x, t) + f(x, t) in (0,∞)× (0,∞),

ux(0, t) = 0 on {x = 0} × [0,∞),

u(x, 0) = ϕ(x) on (0,∞)× {t = 0}.
(310)

Solution: Use even extension, solve this on R, and use the resulting solution on x ∈ R to x ∈ R+.

u(x, t) =

∫ ∞

∞
S(x− y, t)ϕeven(y) dy +

∫ t

0

∫ ∞

−∞
S(x− y, t− s)feven in x(y, s) dyds. .
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(ix) Homogeneous, Wave on R+, Dirichlet BC.
utt(x, t) = c2uxx(x, t) in (0,∞)× (0,∞),

u(0, t) = 0 on {x = 0} × [0,∞),

u(x, 0) = ϕ(x) on (0,∞)× {t = 0},
ut(x, 0) = ψ(x) on (0,∞)× {t = 0}.

(311)

Solution: Use odd extension, solve this on R, and use the resulting solution on x ∈ R to x ∈ R+.

u(x, t) =
1

2
(ϕodd(x− ct) + ϕodd(x+ ct)) +

1

2c

∫ x+ct

x−ct

ψodd(y)dy. .

(x) Homogeneous, Wave on R+, Neumann BC.
utt(x, t) = c2uxx(x, t) in (0,∞)× (0,∞),

ux(0, t) = 0 on {x = 0} × [0,∞),

u(x, 0) = ϕ(x) on (0,∞)× {t = 0},
ut(x, 0) = ψ(x) on (0,∞)× {t = 0}.

(312)

Solution: Use even extension, solve this on R, and use the resulting solution on x ∈ R to x ∈ R+.

u(x, t) =
1

2
(ϕeven(x− ct) + ϕeven(x+ ct)) +

1

2c

∫ x+ct

x−ct

ψeven(y)dy. .

(xi) Inhomogeneous, Wave on R+, Dirichlet BC. (Duhamel’s Principle.)
utt(x, t) = c2uxx(x, t) + f(x, t) in (0,∞)× (0,∞),

u(0, t) = 0 on {x = 0} × [0,∞),

u(x, 0) = ϕ(x) on (0,∞)× {t = 0},
ut(x, 0) = ψ(x) on (0,∞)× {t = 0}.

(313)

Solution: Use odd extension, solve this on R, and use the resulting solution on x ∈ R to x ∈ R+.

u(x, t) =
1

2
(ϕodd(x− ct) + ϕodd(x+ ct)) +

1

2c

∫ x+ct

x−ct

ψodd(y)dy +
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

fodd in x(y, s) dyds.

(xii) Inhomogeneous, Wave on R+, Neumann BC. (Duhamel’s Principle.)
utt(x, t) = c2uxx(x, t) + f(x, t) in (0,∞)× (0,∞),

ux(0, t) = 0 on {x = 0} × [0,∞),

u(x, 0) = ϕ(x) on (0,∞)× {t = 0},
ut(x, 0) = ψ(x) on (0,∞)× {t = 0}.

(314)

Solution: Use even extension, solve this on R, and use the resulting solution on x ∈ R to x ∈ R+.

u(x, t) =
1

2
(ϕeven(x− ct) + ϕeven(x+ ct)) +

1

2c

∫ x+ct

x−ct

ψeven(y)dy +
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

feven in x(y, s) dyds.
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Remarks:

• To remove the subscript ()odd or ()even, one would have to unpack what is meant to be odd/even. Recall
that we define fodd(x) and feven(x) as

fodd(x) =


f(x) x > 0

−f(−x) x < 0

0 x = 0

, and feven(x) =

{
f(x) x > 0

f(−x) x < 0
. (315)

• Furthermore, the method that we use to derive all the above combinations follows a similar idea as in
Discussion Supplement 7! You will be required to provide the relevant details in HW 7 Exercise 2.

• However, note that we are not encompassing the possibility of a Dirichlet/Neumann-like boundary condi-
tions but with its value to be a function rather than just zero! The following example deals with such a
case for the diffusion equation. The case for the wave equation is dealt with in HW 7 Exercise 3 (with a
slightly different method - Hint for that exercise: Strauss Chapter 3 Page 7822).

• Inhomogeneous PDEs and Durhamel’s Principle. Without loss of generality, we consider this for the
diffusion equation (and without loss of generality, on R). A similar argument holds for the wave equation.
This is given by {

ut(x, t) = Duxx(x, t) + f(x, t) in R× (0,∞),

u(x, 0) = ϕ(x) on R× {t = 0}.
(316)

By linearity, this is equivalent to solving two separate PDEs, one with the forcing term and zero initial
data, while the other without the forcing term but with the full initial data. These are given by{

(u1)t(x, t) = D(u1)xx(x, t) in R× (0,∞),

(u1)(x, 0) = ϕ(x) on R× {t = 0},
(317)

and {
(u2)t(x, t) = D(u2)xx(x, t) + f(x, t) in R× (0,∞),

(u2)(x, 0) = 0 on R× {t = 0}.
(318)

The solution to u1 is given by the standard source formula for diffusion equation on the real line. However,
to solve u2, this is given by Durhamel’s Principle (see derivation with Green’s and delta functions in
lectures). This implies that the solution is given by

u(x, t) = u1 + u2

=

∫ ∞

∞
S(x− y, t)ϕ(y) dy +

∫ t

0

∫ ∞

−∞
S(x− y, t− s)f(y, s) dyds.

(319)

• For the inhomogeneous wave equation, the solution includes a term

1

2c

∫ ∫
∆

f(y, s) dyds =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

f(y, s) dyds. (320)

Here, ∆ refers to the domain of dependence for a point (x, t).23

22Second Edition
23One has to take note of what this means in the case where we have feven in x or fodd in x, as it is a folded rectangle. See lecture

notes/Strauss’s book for an example of this.
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Diagram for ∆:

x

t

×
(x, t)

∆

×
(x− ct, 0)

×
(x+ ct, 0)
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Example 54. Find the solution to the inhomogeneous diffusion equation with a boundary source h(t),
mainly, 

ut(x, t) = Duxx(x, t) + f(x, t) in (0,∞)× (0,∞),

u(0, t) = h(t) on {x = 0} × [0,∞),

u(x, 0) = ϕ(x) on (0,∞)× {t = 0}.
(321)

You can leave your answers in even or odd without further simplification for this problem.

Suggested Solution:

Observe that
ut = Duxx + f(x, t)

(u− h(t) + h(t))t = Duxx + f(x, t)

(u− h(t))t = D(u− h(t))xx + f(x, t)− h′(t)

(322)

since (h(t))xx = 0 as we are taking partial derivatives with respect to x on a function that only depends
on t and not x. This suggests using a substitution

v(x, t) = u(x, t)− h(t). (323)

From the above argument, we thus have
vt(x, t) = Dvxx(x, t) + f(x, t)− h′(t) in (0,∞)× (0,∞),

v(0, t) = 0 on {x = 0} × [0,∞),

v(x, 0) = ϕ(x)− h(0) on (0,∞)× {t = 0},
(324)

since v(x, 0) = u(x, 0)− h(0) = ϕ(x)− h(0), and v(0, t) = u(0, t)− h(t) = 0 by (321). We can now apply
case (vii) to obtain

u(x, t) =

∫ ∞

∞
S(x− y, t)(ϕ− h(0))odd(y) dy +

∫ t

0

∫ ∞

−∞
S(x− y, t− s)(f − h′)odd in x(y, s) dyds.

=

∫ ∞

∞
S(x− y, t)ϕodd(y) dy +

∫ t

0

∫ ∞

−∞
S(x− y, t− s)fodd in x(y, s) dyds.

+

∫ ∞

0

S(x− y, t)h(0) dy +

∫ 0

−∞
S(x− y, t)(−h(0)) dy −

∫ t

0

∫ ∞

−∞
S(x− y, t− s)h′(s) dyds.

(325)
Since the question does not require further simplification (and it does not seem like much can be simpli-
fied, though it is possible), we are done!
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Example 55. Find the solution to the inhomogeneous (forced) wave equation on R given by
utt(x, t) = uxx(x, t) + f(x, t) in R× (0,∞),

u(x, 0) = 0 on R× {t = 0},
ut(x, 0) = 0 on R× {t = 0},

(326)

with

f(x, t) =

{
2 x < 0 and t > 0

0 otherwise.
(327)

Suggested Solution: This falls under case (iv). By the formula derived (or basically just d’Alembert’s
solution with Duhamel’s Principle), with c = 1, we have since ϕ = ψ ≡ 0,

u(x, t) =
1

2

∫∫
∆

f(y, s) dyds. (328)

Instead of using the explicit formula for ∆, one can consider doing so by considering the physical in-
tepretation of ∆ as the domain of dependence, and its interaction with the forcing function f . See
that

u(x, t) =
1

2

∫∫
∆

f(y, s) dyds.

=
1

2

∫∫
∆∩{x<0}

f(y, s) dyds since f = 0 on x ≥ 0

=
1

2

∫∫
∆∩{x<0}

2 dyds by definition of f

= Area of (∆ ∩ {x < 0})

(329)

Referring to the diagram below for the relevant geometric analysis, we have

u(x, t) =


t2 x ≤ −t (i)
t2 − 1

2 (x+ t)2 −t < x ≤ 0 (iii)
1
2 (t− x)2 0 < x ≤ t (iv)
0 x > t (ii)

(330)
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Primer to PDE by Separation of Variables (Boundary Value Problems)

Although the last exercise on HW 7 relates to this concept, we shall postpone the treatment of this till the next
discussion section, as that will be the focus for HW 8/Discussion Supplement 9. Nonetheless, one should note
that for this part of the course, you should recall how to solve standard ODEs from 33B.
Let us look at a couple of examples below (motivated by the possible ODEs that one would encounter in the
upcoming lectures).

Example 56. Find all values of λ > 0 such that

X ′′(x) = −λX(x) for x ∈ (0, 1), X(0) = X(1) = 0, (331)

admits a non-zero solution on x ∈ [0, 1].

Suggested Solution:
Recall from 33B that the general solution is given by

X(x) = A cos(
√
λx) +B sin(

√
λx). (332)

Using X(0) = 0, we have A = 0. We then have

X(x) = B sin(
√
λx). (333)

Next, using X(1) = 0, we have
B sin(

√
λ) = 0. (334)

Thus, it is possible to have B ̸= 0 if sin(
√
λ) = 0. This implies that we havea

√
λ = nπ, n ∈ Z
λ = n2π2, n ∈ N \ {0}

(335)

Thus, the possible values of λ such that we have a non-zero solution on [0, 1] are

λ = n2π2, n ∈ N \ {0} . (336)

aN for me includes 0.

The purpose of this question, though serves as a recap, is to raise the following question. We know from 33B
that the second-order ODE can be solved using the ansatz eµx. Plugging this into (332), we have

µ2eµx = −λeµx. (337)

Since eµx > 0 for all real x, we then have µ2 = −λ, and we should obtain

µ = ±
√
−λ = i

√
λ. (338)

Thus, we should really be using
X(x) = Aei

√
λx +Be−i

√
λx. (339)

However, this might not be convenient for us, since both X(0) = X(1) require use to solve a system of two
equations with two unknowns (A and B). Instead, by Euler’s formula eiθ = cos(θ) + i sin(θ), we have

X(x) = A cos(
√
λx) + iA sin(

√
λx) +B cos(−

√
λx) + iB sin(−

√
λx)

= A cos(
√
λx) + iA sin(

√
λx) +B cos(

√
λx)− iB sin(

√
λx)

= (A+B) cos(
√
λx) + (iA− iB) sin(

√
λx)

= A′ cos(
√
λx) +B′ sin(

√
λx)

(340)

where A′ = A + B, and B′ = iA − iB are the new arbitrary constants! This allows us to switch from the
exponential form in (339) to (340)! Let us look at an example in which cosh and sinh are actually a little more
useful in the example below.
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Example 57. Find all values of λ > 0 such that

X ′′(x) = λX(x) for x ∈ (0, 1), X(0) = X ′(1) = 0, (341)

admits a non-zero solution on x ∈ [0, 1].

Suggested Solution:
The general solution is given by

X(x) = A cosh(
√
λx) +B sinh(

√
λx). (342)

Using X(0) = 0, since sinh(0) = 0 and cosh(0) = 1, we have A = 0. We then have

X(x) = B sinh(
√
λx). (343)

Next, we compute
X ′(x) = B

√
λ cosh(

√
λx). (344)

Next, using X ′(1) = 0, we have
B cosh(

√
λ) = 0. (345)

Note that since cosh(x) ≥ 1 for all x ∈ R, then cosh(
√
λ) ̸= 0 for all λ ≥ 0. We can then drop this term

on both sides to obtain B = 0.

Conclusion: No such λ exists.

Before we show that the general solution is indeed given by (342), let us recap some properties of sinh and cosh
(the list of properties is not exhaustive):

• sinh(x) = ex−e−x

2 , cosh(x) = ex+e−x

2 .

• d
dx sinh(x) = cosh(x), d

dx cosh(x) = sinh(x) (Its just like derivatives for sin and cos, but without the
negative sign when we differentiate cos).

• sinh(x) = 0 =⇒ x = 0, while cosh(x) ≥ 1 for all x ∈ R. See the graphs for sinh(x) and cosh(x).

Now, we shall derive why this is the case for (341). Use the ansatz X(x) = eµx, plug into (341), drop eµx, and
obtain

µ2 = λ =⇒ µ = ±
√
λ. (346)

The general solution is given by
X(x) = Ae

√
λx +Be−

√
λx. (347)

This can be simplified as

X(x) = Ae
√
λx +Be−

√
λx

=

(
A+B

2
+
A−B

2

)
e
√
λx +

(
A+B

2
− A−B

2

)
e−

√
λx

= (A+B)

(
e
√
λx + e−

√
λx

2

)
+ (A−B)

(
e
√
λx − e−

√
λx

2

)
= A′ cosh(

√
λx) +B′ sinh(

√
λx),

(348)

with new arbitrary constants A′ = A+B, and B′ = A−B.
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9 Discussion 9.

All functions have sufficient smoothness as required, unless stated otherwise.

Remark: The way you should use this discussion is as such - there are various comments/footnotes on the
right mathematical framework for the relevant concepts, though I would say that they are not essential. This is
something that one can look into for the relevant technicalities/details, or if you are interested in the analysis
aspect of these theories. Furthermore, such a perspective to this is unique to the level of details/perspective in
this class, which might seem to be awkward if one is familiar with Fourier Analysis.

Boundary Value Problems.

For this discussion, the emphasis is on solving boundary value problems, i.e, considering a finite domain in
space such that we impose certain values on the unknown function u and/or its derivative ux on the boundary
of the aforementioned space. In other words, we will be solving PDE problems (i.e say diffusion equation) that
look like this 

ut(x, t) = Duxx(x, t) in (a, b)× (0,∞),

u(a, t) = f(t) on {x = a} × [0,∞),

u(b, t) = g(t) on {x = b} × [0,∞),

u(x, 0) = ϕ(x) on [a, b]× {t = 0}.

(349)

Before we try to solve some of these, here are some theoretical results (derived in class) that you should know.

Eigenvalue Problems for Self-Adjoint Differential Operator.

Recap: In linear algebra (33A or 115A), we say that we are solving for the eigenvalues and/or eigenvector of a
real-valued n× n matrix if

Av = λv (350)

for some λ ∈ R and v. We then call λ the eigenvalue, and v ̸= 0, the corresponding eigenvector for λ.24

We can treat this concept analogously for a differential operator, by viewing A = − d2

dx2 and v = f as the
(eigen)functions that can solve the ODE described by (350).

Inspired from Discussion Supplement 8 (and since I did not explicitly cover this in the previous discussion), let
us look at an example below, similar to the last two examples covered in the previous discussion supplement,
but worded using mathematical language that we are going to use for this discussion.

Example 58. Find all possible eigenvalues and eigenvectors for the differential operator − d2

dx2 in the
(vector) space of functions defined on [0, 1] satisfying the Dirichlet boundary conditions;a ie

{ functions X on [0, 1] : X(0) = X(1) = 0}.

In other words, find all possible values of λ ∈ R and the corresponding functions X(x) such that

−X ′′(x) = λX(x) for x ∈ (0, 1), X(0) = X(1) = 0, (351)

admits a non-zero solution on its domain x ∈ [0, 1].

Suggested Solution:
λ = 0. This is equivalent to solving

−X ′′(x) = 0 for x ∈ (0, 1), X(0) = X(1) = 0. (352)

Integrating with respect to x directly, we see that X(x) = Ax+B. Using the fact that X(0) = X(1) = 0,
we can solve for A and B and obtain that A = B = 0.

24Technicality: An eigenvalue can be zero, but an eigenfunction cannot be the zero function since the associated eigenvalue for the zero
function is just any real (complex) number!
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λ > 0. This is equivalent to solving

X ′′(x) = −λx for x ∈ (0, 1), X(0) = X(1) = 0. (353)

Recall from 33B that the general solution is given by

X(x) = A cos(
√
λx) +B sin(

√
λx). (354)

Using X(0) = 0, we have A = 0. We then have

X(x) = B sin(
√
λx). (355)

Next, using X(1) = 0, we have
B sin(

√
λ) = 0. (356)

Thus, it is possible to have B ̸= 0 if sin(
√
λ) = 0. This implies that we haveb

√
λ = nπ, n ∈ Z
λ = n2π2, n ∈ N \ {0}

(357)

Thus, for λ > 0, the corresponding eigenfunctions are Xn(x) = sin(nπx), with corresponding eigenval-
ues λn = n2π2 with n ∈ N \ {0}.

λ < 0. This is equivalent to solving

X ′′(x) = λ̃x for x ∈ (0, 1), X(0) = X(1) = 0, (358)

for λ̃ > 0. From Discussion Supplement 8, the general solution is given by

X(x) = A cosh(
√
λ̃x) +B sinh(

√
λ̃x). (359)

Using X(0) = 0, since sinh(0) = 0 and cosh(0) = 1, we have A = 0. We then have

X(x) = B sinh(
√
λ̃x). (360)

Next, we compute

X ′(x) = B
√
λ̃ cosh(

√
λ̃x). (361)

Next, using X ′(1) = 0, we have

B cosh(
√
λ̃) = 0. (362)

Note that since cosh(x) ≥ 1 for all x ∈ R, then cosh(
√
λ̃) ̸= 0 for all λ̃ > 0. We can then drop this term

on both sides to obtain B = 0. Thus, we necessarily obtain the zero solution. This implies that there are
no eigenvalues (and thus corresponding eigenfunctions) in which λ < 0.

In summary, the eigenvalues with the corresponding eigenfunctions are

Xn(x) = sin(nπx), λn = n2π2, for n ∈ N \ {0}.

aI’m being vague on purpose here since there are lots of technicalities/Analysis involved here. If one must know, the right
choice here is L2(0, 1) (ie functions in which

∫ 1
0 |f(x)|2dx < +∞). Furthermore, for the function to be differentiable, we would

require X ∈ C2(0, 1). This requirement is not strict since we can define this concept called a weak derivative (briefly included
in remarks of previous discussion supplements), but this is way outside of the scope of this class. Example as to why this is not
enforced: We want to be able to write say a square wave with values 1 for x ∈ [1/3, 2/3] and 0 otherwise as a linear combination
of these eigenfunctions (if these eigenfunctions serve as a basis for this space), but if we imposed the additional requirement on
differentiability, then this square wave is not differentiable, and thus is not an element in this space of functions although it does
take values 0 at x = 0 and x = 1.

bN for me includes 0.

Note that the choice of associating the negative sign with − d2

dx2 is crucial in ensuring that it has no negative
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eigenvalues. (This can be seen from the previous example, where the computed eigenvalues are all positive!)
In HW 8 Exercise 2, you will prove that there is a general set of boundary conditions in which the eigenvalues
for this differential operator is non-negative!

Next, we shall see that − d2

dx2 is a self-adjoint differential operator with respect to its corresponding boundary
conditions (which usually is). Before we begin with a formal definition, we first define an inner product:

Definition 59. An inner product (·, ·) between two real-valued functions defined on [a, b] is given bya

(f, g) =

∫ b

a

f(x)g(x) dx. (363)

aWith the additional condition that these functions f and g are in L2(a, b), ie f ∈ L2(a, b) if
∫ b
a |f(x)|2dx < +∞. See footnote

from Example 58 on a comment on this. One will have to take the complex conjugate on g if f and g are complex-valued instead.

Here is a formal definition:

Definition 60. A differential operator L is self-adjoint with respect to its corresponding boundary condi-
tions if

(L[f ], g) = (f,L[g]) (364)

for every f, g ∈ C2 and satisfying the corresponding boundary conditions.

Remark: Self-adjoint is a property of a differential operator associated with the boundary conditions - that is, if
the boundary conditions changes, it might not neccessarily be true that L remains self-adjoint!

Proposition 61. L = − d2

dx2 is self-adjoint with respect to its corresponding boundary conditions on the
space of functions defined on [a, b] as long as for each f in that space, we have

• Either f(a) = 0 or f ′(a) = 0, and

• Either f(b) = 0 or f ′(b) = 0. (ie, mixture of Dirichlet and Neumann.) OR,

• We impose periodic boundary conditions f(a) = f(b), f ′(a) = f ′(b).

In addition, under these boundary conditions, one can also show that the eigenvalues of L are non-
negative. (See HW 8 Exercise 2.)

For a proof in which a = 0, b = L and f ′(0) = f ′(L) = 0, see lecture notes at 8.3.pdf. We shall then include a
list of properties that it enjoys:

Proposition 62. A self-adjoint differential operator with respect to its corresponding boundary condi-
tions has the following properties:

(i) Eigenvalues are real.

(ii) Eigenfunctions form a basis for the space of functions in which it is defined for (with the corre-
sponding boundary conditions). Another word for this is that the eigenfunctions are complete.

(iii) Distinct eigenvalues corresponds to distinct eigenfunctions.

(iv) There are countably infinitly many eigenvalues.

Though abstract, this will be useful to “shortcut”/justify many computations to come when we are solving a PDE
by separation of variables! In view of property (ii) from the above proposition, this means that any function
satisfying the boundary conditions can be written as a linear combination of its basis functions (which are
the eigenfunctions that we have computed)! In other words, in Example 58, the eigenfunctions are given by
sin(nπx) for n ∈ N\{0}. Thus, we can write any function satisfying the boundary conditions (including functions
representing initial conditions/boundary conditions) as a linear combination of sin(nπx), ie if f(0) = f(1) = 0,
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we can then write

f(x) =

∞∑
n=1

An sin(nπx) (365)

for coefficients An to be determined. This thus motivates the following concept on Fourier Series.
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Fourier Series.

• In Example 58, we have shown that the eigenfunctions for L = − d2

dx2 with X(0) = X(1) = 0 are given by
Xn(x) = sin(nπx). In view of Proposition 62 (ii), these eigenfunctions form a basis for

{ functions X on [0, 1] : X(0) = X(1) = 0}.

This is why any functions f with f(0) = f(1) = 0 can be written as a linear combinations of sin(nπx) for
n ∈ N \ {0}.

• Similarly, one can show that the eigenfunctions for L = − d2

dx2 with X ′(0) = X ′(1) = 0 are given by
Xn(x) = cos(nπx) for n ∈ N, which forms a basis for25

{ functions X on [0, 1] : X ′(0) = X ′(1) = 0}.

• Formally, if we just want to express any function defined on (0, 1) (ie excluding the boundary), we could
pick {sin(nπx) : n ∈ N \ {0}} or {cos(nπx) : n ∈ N} as the basis functions (ie if we are not concerned with
matching boundary values, then either of the basis functions are fine). However, we would not expect the
infinite series to converge uniformly on [0, 1] since the boundary conditions at x = 0 and x = 1 are not
necessarily satisfied. We call the former, a Fourier sine series, and the latter, a Fourier cosine series.

• In fact, one notes that for the space of function just defined by

{ functions X on [0, 1]},

an appropriate basis function should be {1, sin(nπx), cos(nπx) : n ∈ N \ {0}}. We can then write out the
full Fourier series, given by

f(x) =

∞∑
n=1

An sin(nπx) +

∞∑
n=0

Bn cos(nπx). (366)

• Nonetheless, if you want to find solutions to your ODE that satisfies the boundary condition, we should
always use the correct basis function obtained by solving for the eigenfunctionsXn with the corresponding
boundary conditions!

To match the general form given in lecture, we now consider functions X on [0, L]. One can show, following
the same argument as in Example 58, that the corresponding eigenfunctions for X(0) = X(L) = 0 and X ′(0) =
X ′(L) = 0 are

• X(0) = X(L) = 0: Xn(x) = sin
(
nπx
L

)
for n ≥ 1, n ∈ N.

• X(0) = X(L) = 0: Xn(x) = cos
(
nπx
L

)
for n ≥ 1, n ∈ N, and X0(x) = 1 (with λ0 = 0).

These (eigen)functions consisting of 1, sin
(
nπx
L

)
for n ∈ N \ {0}, and cos

(
nπx
L

)
for n ∈ N \ {0}, satisfy the

following orthogonality relations (with respect to the inner product defined above):

Proposition 63. (Orthogonality Relations.)

(i)
(
sin
(
nπx
L

)
, sin

(
mπx
L

))
=
∫ L

0
sin
(
nπx
L

)
sin
(
mπx
L

)
dx = 0 for all n ̸= m ∈ N.

(ii)
(
cos
(
nπx
L

)
, cos

(
mπx
L

))
=
∫ L

0
cos
(
nπx
L

)
cos
(
mπx
L

)
dx = 0 for all n ̸= m ̸= 0 ∈ N.

(iii)
(
cos
(
nπx
L

)
, cos

(
nπx
L

))
=
∫ L

0
cos
(
nπx
L

)2
dx = L

2 for all n ≥ 1 (n ∈ N).

(iv)
(
sin
(
nπx
L

)
, sin

(
nπx
L

))
=
∫ L

0
sin
(
nπx
L

)2
dx = L

2 for all n ≥ 1 (n ∈ N).

(v)
(
1, cos

(
nπx
L

))
=
∫ L

0
cos
(
nπx
L

)
dx = 0 for all n ≥ 1 (n ∈ N).

(vi) (1, 1) =
∫ L

0
12 dx = L. Note that this is L and not L

2 as for the other sin and cos functions.

25This includes the case where n = 0, ie cos(0) = 1, the constant function, is also a basis function!
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These properties can be proven by direct computation (using Calculus). Some of them are proved in lectures -
see 8.1.pdf.

Remark: It makes sense for
(
1, cos

(
nπx
L

))
since they are orthogonal eigenfunctions of the same space. However,

it might not be true that
(
1, sin

(
nπx
L

))
(one can see from the Example below).

Suppose we want to write ϕ(x) defined on [0, L] in terms of its Fourier sine series. This implies that

ϕ(x) =

∞∑
n=1

An sin
(nπx
L

)
. (367)

To determine the coefficients An, multiply both sides by sin
(
mπx
L

)
and integrate from 0 to L. This is equivalent

to taking the inner product with respect to sin
(
mπx
L

)
on both sides. We have for m ≥ 1,

(
sin
(mπx

L

)
, ϕ(x)

)
=

(
sin
(mπx

L

)
,

∞∑
n=1

An sin
(nπx
L

))
(
sin
(mπx

L

)
, ϕ(x)

)
=

∞∑
n=1

An

(
sin
(mπx

L

)
, sin

(nπx
L

))
(
sin
(mπx

L

)
, ϕ(x)

)
= Am

L

2

Am =
2

L

(
sin
(mπx

L

)
, ϕ(x)

)
=

2

L

∫ L

0

sin
(mπx

L

)
ϕ(x) dx, m ≥ 1.

(368)

Here, we have used Proposition 63 (ii) to deduce that all the inner products for different n are 0, unless (by
(v)), m = n. In that case, the inner product evaluates to L

2 .26

We can do a similar set of derivations for the Fourier cosine series:

ϕ(x) = B0 +

∞∑
n=1

Bn cos
(nπx
L

)
(369)

to obtain

Bm =
2

L

∫ L

0

cos
(mπx

L

)
ϕ(x) dx, m ≥ 1,

B0 =
1

L

∫ L

0

ϕ(x) dx.

(370)

Remark: It is important to know the derivation for these formulas as compared to memorizing them, as we
might have different eigenfunctions for boundary conditions that are not purely Dirichlet/Neumann.

26Pulling the sum outside of the inner product follows from the fact that (f, g + h) =
∫ L
0 f(x)(g + h)(x) dx =

∫ L
0 f(x)g(x) dx +∫ L

0 f(x)h(x) dx = (f, g) + (f, h), linearity in each of the “slots” of the inner product. If you are worried about justifying interchanging
infinite sum with integrals, this might work if we know that the Fourier series of f converges uniformly to f (this depends on “types of
convergence” results from Strauss or just Fourier Analysis in general (which might have been covered in 135)).



Spring 22 MATH136 Discussion Supplements 83

Example 64. (Strauss 5.1.2i). Let ϕ(x) = x2 for 0 ≤ x ≤ 1. Compute its Fourier sine series.

Suggested Solution: We shall use the formulas derived in (368) instead (but one should also understand
how these formulas are derived), and put focus on computing some of these integrals that arise.
For m ≥ 1 and L = 1, we have (by applying integration by parts twice),

Am = 2

∫ 1

0

sin(mπx)x2 dx

= − 2

mπ
cos(mπx)x2|10 +

∫ 1

0

4

mπ
cos(mπx)xdx

= − 2

mπ
cos(mπ) +

4

mπ

∫ 1

0

cos(mπx)xdx

= − 2

mπ
cos(mπ) +

4

m2π2
sin(mπx)x|10 −

4

m2π2

∫ 1

0

sin(mπx) dx

= − 2

mπ
cos(mπ) +

4

m2π2
sin(mπ)− 4

m2π2

∫ 1

0

sin(mπx) dx

= − 2

mπ
cos(mπ) +

4

m2π2
sin(mπ) +

4

m3π3
[cos(mπ)− cos(0)]

= − 2

mπ
cos(mπ) +

4

m2π2
sin(mπ) +

4

m3π3
[cos(mπ)− 1]

(371)

The first and third term can be evaluated using the formula

cos(mπ) = (−1)m

for m ∈ N,m ≥ 1 (check this by substituting m = 1, 2, 3, ...).

The second term in sin(mπ) is zero since
sin(mπ) = 0

for m ∈ N,m ≥ 1.

This implies that

Am =
2(−1)m+1

mπ
− 4(1− (−1)m)

m3π3
(372)

so

x2 =

∞∑
n=1

An sin(nπx) =

∞∑
n=1

(
2(−1)n+1

nπ
− 4(1− (−1)n)

n3π3

)
sin(nπx). (373)

If you want to practice, here is another question:

Exercise 65. (Strauss 5.1.2ii.) Let ϕ(x) = x2 for 0 ≤ x ≤ 1. Compute its Fourier cosine series.

We are now ready to discuss solving boundary value PDEs by separation of variables.
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Solving Boundary Value Problems - Separation of Variables.

We have all the mathematical tools ready, so lets dive right into an example!

Example 66. In lectures, we have solved the wave equation on a bounded domain with Dirichlet bound-
ary conditions. Let us now consider the wave equation with Neumann boundary conditions on a bounded
domain [0, L] with c = 1 with general initial conditions. Mathematically, this is given bya

utt(x, t) = uxx(x, t) in (0, L)× (0,∞),

ux(0, t) = 0 on {x = 0} × [0,∞),

ux(L, t) = 0 on {x = L} × [0,∞),

u(x, 0) = ϕ(x) on [0, L]× {t = 0},
ut(x, 0) = ψ(x) on [0, L]× {t = 0}.

(374)

Solve this by separation of variables.

Suggested Solution :

Step 1: Look for separable solutions and derive boundary conditions.
Here, we look for non-trivial solutionsb of the form

u(x, t) = X(x)T (t)

(ie separable). Using the Neumann boundary conditions, this implies that

ux(0, t) = X ′(0)T (t) = 0, and ux(L, t) = X ′(L)T (t) = 0. (375)

From the first equation, either X ′(0) = 0 or T (t) = 0 for all t ≥ 0. However, the latter implies that
u(x, t) = X(x)T (t) = 0 since T is now the zero function, and we obtain a trivial (zero) “solution” (it
might not even satisfy the initial conditions!) to the above PDE. Similarly, one deduces that X ′(L) = 0.
In summary,

X ′(0) = X ′(L) = 0. (376)

Plugging this into the PDE, we get

utt(x, t) = X(x)T ′′(t)

uxx(x, t) = X ′′(x)T (t)

utt(x, t)− uxx(x, t) = X(x)T ′′(t)−X ′′(x)T (t) = 0.

(377)

Dividing both sides of the equation by X(x)T (t),c we obtain

X ′′(x)

X(x)
=
T ′′(t)

T (t)
(378)

Since the LHS of (378) only depends on x, and the RHS of (378) only depends on t, then (378) is equals
to a constant. One way to understand this is that if x varies while keeping t fixed, it does not change the
value on the right. This implies that it must be a constant in x for any given t. Using a similar argument,
we then have that it is a constant in t for any given x.d Thus, (378) becomes

− X ′′(x)

X(x)
= −T

′′(t)

T (t)
= λ (379)

where λ is a constant. In fact, this constant must be a non-negative constante, since λ here is viewed as
the eigenvalue to the problem −X ′′(x) = λX(x) with boundary terms X ′(0) = X ′(L) = 0, which we
have already shown that the eigenvalues must be non-negative (see HW 8 Exercise 2 or Proposition 61).
f

Step 2: Solve the corresponding eigenvalue problem in X.
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Now, we would like to solve the eigenvalue problem{
−X ′′(x) = λX(x)

X ′(0) = X ′(L) = 0
(380)

to obtain the corresponding eigenvalues and more importantly, eigenfunctions. If λ = 0, then
X(x) = Ax + B. Using X ′(0) = X ′(L) = 0, we can only determine that A = 0. Thus, X(x) = B, an
arbitrary constant, is an eigenfunction. In particular, the function 1 is an eigenfunction.

For λ > 0, The general solution is given by

X(x) = A sin(
√
λx) +B cos(

√
λx)

X ′(x) = A
√
λ cos(

√
λx) +B

√
λ sin(

√
λx).

(381)

Using X ′(0) = 0, this implies that A
√
λ = 0. Since λ > 0, this implies that A = 0. With X ′(x) =

B
√
λ sin(

√
λx) left, we use the condition X ′(L) = 0 to obtain

X ′(L) = B
√
λ sin(

√
λL) = 0. (382)

Note that it is now possible for this expression to be 0 with B ̸= 0. This happens when sin(
√
λL) = 0, or

when
√
λL = nπ for n ∈ N \ {0}, or

λn =
n2π2

L2
, n ∈ N \ {0}. (383)

The corresponding eigenfunctions (the functions attached to B in X(x) since B ̸= 0, and combining with
the case when λ > 0) are

Xn(x) = cos(
√
λnL) = cos

(nπx
L

)
, n ∈ N, (384)

since these functions will satisfy the boundary conditions but are non-zero functions.

Step 3: Solve the corresponding ODE in T .g

Going back to (379), this implies that there are only countably finitely many λ (given by λn above) that
gives a non-zero solution. Thus, for each n ∈ N, we will be solving the ODE:

− T ′′
n (t) = λnTn(t), (385)

where we index the function T (t) by n to imply that we are solving a different ODE for different n (due
to different values of λn). Since λn ≥ 0, for λ = 0 (ie at n = 0), we obtain

T0(t) = A0t+B0. (386)

Recall that for each n, we are solving a different ODE, so the arbitrary constants are different, and thus
are indexed by n.
For λn > 0 (ie for n ≥ 1), we obtain

Tn(t) = An sin(
√
λnt) +Bn cos(

√
λnt)

= An sin

(
nπt

L

)
+Bn cos

(
nπt

L

)
.

(387)

Step 4: Obtain general solution by linearity.

By linearity, for each n, the solution un(x, t) = Xn(x)Tn(t) is a solution. Thus, a linear combination of
these un(x, t) is also a solution. This implies thath

u(x, t) =
∑
n∈N

un(x, t)

=
∑
n∈N

Xn(x)Tn(t)

= (1)(A0t+B0) +
∑

n∈N,n≥1

cos
(nπx
L

)(
An sin

(
nπt

L

)
+Bn cos

(
nπt

L

))
.

(388)
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Step 5: Solve for the “Fourier” coefficients.
First, see that (since sin(0) = 0, cos(0) = 1),

ϕ(x) = u(x, 0) = B0 +

∞∑
n=1

Bn cos
(nπx
L

)
=

∞∑
n=0

Bn cos
(nπx
L

)
. (389)

Thus, the Bn are coefficients of the Fourier cosine series. Using (370), we obtain

Bn =
2

L

∫ L

0

cos
(nπx
L

)
ϕ(x) dx, n ≥ 1,

B0 =
1

L

∫ L

0

ϕ(x) dx.

(390)

Next, take ∂
∂t to obtain

ut(x, t) = A0 +
∑

n∈N,n≥1

cos
(nπx
L

)(Annπ

L
cos

(
nπt

L

)
+

−Bnnπ

L
sin

(
nπt

L

))

ψ(x) = ut(x, 0) = A0 +

∞∑
n=1

Annπ

L
cos
(nπx
L

)
.

(391)

Let C0 = A0 and Cn = Annπ
L , we then obtain the Fourier cosine series again (in Cn). Using (370), we

get

Cn =
2

L

∫ L

0

cos
(nπx
L

)
ψ(x) dx, n ≥ 1,

C0 =
1

L

∫ L

0

ψ(x) dx,

(392)

so the An’s are given by

An =
2

nπ

∫ L

0

cos
(nπx
L

)
ψ(x) dx, n ≥ 1,

A0 =
1

L

∫ L

0

ψ(x) dx.

(393)

Thus, we have

u(x, t) = (1)(A0t+B0) +
∑

n∈N,n≥1

cos
(nπx
L

)(
An sin

(
nπt

L

)
+Bn cos

(
nπt

L

))
(394)

with coefficients An, Bn for n ∈ N given by (390) and (393).
aTechnicality: We assume that ϕ and ψ are sufficiently well-behaved so that they can be written in terms of Fourier series. This

is usually captured with ”assume all functions have sufficient smoothness as required, unless stated otherwise”, consistent with
remark in one of the footnotes of Example 58.

b“Is zero a solution” can be easily checked by substituting it into the PDE such that it satisfies the initial condition. Thus, it
makes sense to just search for non-zero solutions.

cWe did not discuss about the possibility of X and T being 0 at a point. Most books, not even Strauss, discuss this. The
most convincing argument I have for you (at least, I am convinced) is that we use the argument in (379) as an intuition, and
then come back to (378) and postulate that X(x) are solutions to the eigenvalue problem X′′(x) = −λX(x) for λ independent
of x and t. Note that philosophically, this makes sense because when we write an ansatz/guess to the PDE, we are already
restricting the functions that we are looking for to a smaller space. If it ends up not working, then it implies that either the
restriction is too restrictive (say you have an ansatz u(x, t) = 1) or there really is no solution. Substitute this into (377), we
obtain X(x)T ′′(t) = −λT (t)X(x). Since this holds for all x and t, we pick a point x∗ such that X(x∗) ̸= 0, and then divide by
X(x∗) on both sides to obtain T ′′(t) = −λT (t). If such a point does not exists, this implies that X(x) = 0 for all x, and thus
u(x, t) = X(x)T (t), the trivial solution.

dIf you don’t buy this argument, take λ(x, t) =
X′′(x)
X(x)

=
T ′′(t)
T (t)

. Note that ∂
∂x
λ(x, t) = 0 since ∂

∂x
λ(x, t) = ∂

∂x
T ′′(t)
T (t)

= 0 is

independent of t. Similarly, ∂
∂t
λ(x, t) = ∂

∂t
X′′(t)
X(t)

= 0. Thus, λx = λt = 0 implies that λ is a constant.
eYou can argue without this heavy machinery as in Example 58, but that requires more computation so this is actually a shortcut!
fIf the question “can λ ever be complex” ever pops up in your brain, you are thinking like a pure mathematician! Luckily, I

have the cure for you - Proposition 62(i) with a similar argument of viewing −X′′(x) = λX(x) with X′(0) = X′(L) = 0 as an
eigenvalue problem.
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gNote: This is not an eigenvalue problem for the simple reason that no boundary conditions were given for T (t). You can’t
deduce that T (t) is some function in t using the initial condition since they are not necessarily the zero initial condition, so a
similar argument in Step 1 does not hold.

hWe could have written the solution as C0(1)(A0t + B0) +
∑

n∈N,n≥1 Cn cos
(
nπx
L

) (
An sin

(
nπt
L

)
+Bn cos

(
nπt
L

))
with

arbitrary constants Cn in front, but these are absorbed in the An ’s and Bn ’s, so it doesn’t really matter.

Remark: In HW 7 Exercise 5, you are not required to determine the Fourier coefficients. For HW 8, you should
always determine the Fourier coefficients if needed.

Remark: Note that separation of variables works really well with Dirichlet/Neumann/Periodic boundary condi-
tions or a mixture of two. For the Dirichlet/Neumann conditions, we usually assume that the value/derivative
at the boundary is zero. If this is not zero, we should try to convert the problem to one that solves the zero
boundary condition (sounds familiar?). This is done by linearity! The following example illustrates this:

Example 67. Briefly explain how the diffusion equation on [0, 1], with constant D > 0, can be solved by
separation of variables even though the boundary values/derivatives are non-zero.

ut(x, t) = Duxx(x, t) in (0, 1)× (0,∞),

u(0, t) = 1 on {x = 0} × [0,∞),

ux(1, t) = 2 on {x = 1} × [0,∞),

u(x, 0) = ϕ(x) on [0, 1]× {t = 0}.

(395)

Suggested Solution: By linearity, we would like to solve
(u1)t(x, t) = D(u1)xx(x, t) in (0, 1)× (0,∞),

(u1)(0, t) = 1 on {x = 0} × [0,∞),

(u1)x(1, t) = 2 on {x = 1} × [0,∞),

(u1)(x, 0) = ψ(x) on [0, 1]× {t = 0}

(396)

and 
(u2)t(x, t) = D(u2)xx(x, t) in (0, 1)× (0,∞),

(u2)(0, t) = 0 on {x = 0} × [0,∞),

(u2)x(1, t) = 0 on {x = 1} × [0,∞),

(u2)(x, 0) = ϕ(x)− ψ(x) on [0, 1]× {t = 0}

(397)

so that u(x, t) = u1(x, t) + u2(x, t) solves the original diffusion equation with non-zero boundary con-
ditions. u2(x, t) can be solved by standard separation of variables technique. This is to hold for any ψ(x).

For u1, since the boundary values are time-independent, we postulate a steady-state/time-independent
solution, i.e, search for solutions by guessing (u1)t = 0, ie u1(x, t) is just a function of x. In fact, we can
deduce how u1(x, t) should look like. From (u1)t = D(u1)xx = 0, we know that (u1)(x, t) = f(x). Plug
this in to obtain Df ′′(x) = 0 and thus (u1)(x, t) = f(x) = Ax+B.

Using (u1)(0, t) = 1, we get B = 1. Using (u1)x(1, t) = 2, we obtain A = 2. This implies that (u1)(x, t) =
2x + 1. Now, this function must satisfy the initial condition (u1)(x, 0) = ψ(x), ie 2x + 1 = (u1)(x, 0) =
2x+1. Thus, we can use our freedom of choice for ψ(x) and pick ψ(x) = 2x+1 so that (u1)(x, 0) = ψ(x)!
The solution to the full equation will thus be given by

u(x, t) = (u1)(x, t) + (u2)(x, t)

= 2x+ 1 + (u2)(x, t),
(398)

where u2 solves 
(u2)t(x, t) = D(u2)xx(x, t) in (0, 1)× (0,∞),

(u2)(0, t) = 0 on {x = 0} × [0,∞),

(u2)x(1, t) = 0 on {x = 1} × [0,∞),

(u2)(x, 0) = ϕ(x)− (2x+ 1) on [0, 1]× {t = 0}.

(399)
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10 Discussion 10.

All functions have sufficient smoothness as required, unless stated otherwise.

Separation of Variables for Inhomogeneous Boundary Conditions.
(This part was present in Supplement 9, but I did not have the time to cover it, and I think I should as it is pretty
important.)

Remark: Note that separation of variables works really well with Dirichlet/Neumann/Periodic boundary condi-
tions or a mixture of two. For the Dirichlet/Neumann conditions, we usually assume that the value/derivative
at the boundary is zero. If this is not zero, we should try to convert the problem to one that solves the zero
boundary condition (sounds familiar?). This is done by linearity! The following example illustrates this:

Example 68. Briefly explain how the diffusion equation on [0, 1], with constant D > 0, can be solved by
separation of variables even though the boundary values/derivatives are non-zero.

ut(x, t) = Duxx(x, t) in (0, 1)× (0,∞),

u(0, t) = 1 on {x = 0} × [0,∞),

ux(1, t) = 2 on {x = 1} × [0,∞),

u(x, 0) = ϕ(x) on [0, 1]× {t = 0}.

(400)

Suggested Solution: By linearity, we would like to solve
(u1)t(x, t) = D(u1)xx(x, t) in (0, 1)× (0,∞),

(u1)(0, t) = 1 on {x = 0} × [0,∞),

(u1)x(1, t) = 2 on {x = 1} × [0,∞),

(u1)(x, 0) = ψ(x) on [0, 1]× {t = 0}

(401)

and 
(u2)t(x, t) = D(u2)xx(x, t) in (0, 1)× (0,∞),

(u2)(0, t) = 0 on {x = 0} × [0,∞),

(u2)x(1, t) = 0 on {x = 1} × [0,∞),

(u2)(x, 0) = ϕ(x)− ψ(x) on [0, 1]× {t = 0}

(402)

so that u(x, t) = u1(x, t) + u2(x, t) solves the original diffusion equation with non-zero boundary
conditions. u2(x, t) can be solved by standard separation of variables technique. This is to hold for any
ψ(x), and we will use this freedom of choice for ψ so that any u1(x, t) that we’ve found can satisfy the
initial condition by picking the correct ψ(x).

For u1, since the boundary values are time-independent, we postulate a steady-state/time-independent
solution, i.e, search for solutions by guessing (u1)t = 0, ie u1(x, t) is just a function of x. In fact, we can
deduce how u1(x, t) should look like. From (u1)t = D(u1)xx = 0, we know that (u1)(x, t) = f(x). Plug
this in to obtain Df ′′(x) = 0 and thus (u1)(x, t) = f(x) = Ax+B.

Using (u1)(0, t) = 1, we get B = 1. Using (u1)x(1, t) = 2, we obtain A = 2. This implies that (u1)(x, t) =
2x + 1. Now, this function must satisfy the initial condition (u1)(x, 0) = ψ(x), ie 2x + 1 = (u1)(x, 0) =
2x+1. Thus, we can use our freedom of choice for ψ(x) and pick ψ(x) = 2x+1 so that (u1)(x, 0) = ψ(x)!
The solution to the full equation will thus be given by

u(x, t) = (u1)(x, t) + (u2)(x, t)

= 2x+ 1 + (u2)(x, t),
(403)

where u2 solves 
(u2)t(x, t) = D(u2)xx(x, t) in (0, 1)× (0,∞),

(u2)(0, t) = 0 on {x = 0} × [0,∞),

(u2)x(1, t) = 0 on {x = 1} × [0,∞),

(u2)(x, 0) = ϕ(x)− (2x+ 1) on [0, 1]× {t = 0}.

(404)
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Laplace’s and Poisson’s Equation.
Roughly speaking, Laplace’s equation is given by

−∇2u = 0

where ∇2 = ∇ · ∇ (divergence of gradient) is called the Laplacian operator. The Poisson’s equation includes a
forcing term f(x), and thus is given by

−∇2u = f.

These equations are derived by searching for time-independent solutions to the diffusion equation (ie ut = Duxx
and set ut = 0 since we are searching for a solution u(x, t) ≡ u(x) only, so ut = 0). For this class, we will deal
with the 2 and 3 dimensional case only. (The one-dimensional case is just an ODE!)

On curvilinear domains in which the unknown function only depends on one of the curvilinear27 coordinates,
one can rewrite the Laplacian in the corresponding coordinate system and solve an ODE. Thus, although it is
instructive to know how to write the Laplacian in 2 and 3 dimensions in terms of the spherical and cylindrical
coordinates, you are not required to remember how to for this class. We shall look at an example below, in
which a similar idea follows from HW 9 Exercise 4.

Example 69. (Strauss 6.1.4, modified.) Recall that in spherical polar coordinates (r, θ, ϕ), the Laplacian
of a function u(r) is given by

∇2u(r) =
1

r2
d

dr

(
r2

d

dr
u(r)

)
. (405)

Solve the Laplace’s equation −∇2u = 0 in the spherical shell 1 < r < 2 where u(1) = 1 and u(2) = 2.

Suggested Solution: By searching for a spherical symmetric solution u(x, y, z) = u(r). we then have

1

r2
d

dr

(
r2

d

dr
u(r)

)
= 0. (406)

Multiplying by r2 and integrating with respect to r, we have

r2
d

dr
u(r) = C ′ (407)

for an arbitrary constant C ′. Dividing both sides by r2 (you can because we are solving u for 1 < r < 2
so r > 0), we have

u′(r) =
C ′

r2
. (408)

Integrating with respect to r again, we obtain

u(r) =
C

r
+D (409)

where C and D are arbitrary constants (in fact, C = −C ′). Using the fact that u(1) = 1 and u(2) = 2,
we obtain {

C +D = 1
1
2C +D = 2.

(410)

Solving them, we have C = −2 and D = 3. The solution to Laplace’s equation that satisfies the boundary
condition on a spherical shell 1 < r < 2 is given by

u(r) = −2

r
+ 3.

27A general name for spherical, cylindrical, elliptical, etc.
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For Laplace’s and Poisson’s equation on a rectangular/cuboid domain, we shall begin our discussion with a few
observations for the 2D case (a similar logic holds in 3D):

• Most of the time, we are given boundary conditions at x = a, b and y = c, d (considering that we have
a rectangle [a, b] × [c, d]). Each of these will corresponds to the boundary conditions for the separated
variables X(x) and Y (y).

• For separation of variables for Laplace’s equation, it will always work. For instance, if we are solv-
ing −∇2u = 0, look for separation of variables u(x, y) = X(x)Y (y). We then obtain −X ′′(x)Y (y) −
X(x)Y ′′(y) = 1. If we follow a similar strategy of dividing by X(x)Y (y), we have

−X
′′(x)

X(x)
=
Y ′′(y)

Y (y)
= λ.

The correct strategy to solve the two ODEs depends on the boundary conditions.

• As long as we have Dirichlet/Neumann/mixed/Periodic boundary conditions for either of the variables,
we can use the general strategy for separation of variables for that variable. i.e Suppose without loss of
generality that we have these boundary conditions for X(x). Solve for eigenfunctions and eigenvalues,
substitute the eigenvalues back to the separated ODE for Y (y). Now, obtain the full solution, substitute
the boundary conditions at y = c and y = d to obtain two separate Fourier series in which the coefficients
can be solved.

• If the above point does not hold (ie we have fully/somewhat fully inhomogeneous boundary conditions),
remember that we can always split the Laplace’s equation into two by linearity, so that we are solving
two separate instances of the equation, one with boundary conditions in X(x) and the zero condition for
Y (y); and the other with boundary conditions in Y (y) and the zero condition for X(x). We then repeat
the previous pointer twice, and add the two solutions up by linearity.

• Now, we have a general strategy for Laplace’s equation! For Poisson’s equation, note that the equation
does not “separate”. For instance, if we are solving −∇2u = 1, look for separation of variables u(x, y) =
X(x)Y (y). We then obtain −X ′′(x)Y (y) −X(x)Y ′′(y) = 1. If we follow a similar strategy of dividing by
X(x)Y (y), we have

−X
′′(x)

X(x)
− Y ′′(y)

Y (y)
=

1

X(x)Y (y)
.

The equation above is not separated into ”separate variables” on LHS and RHS of the equation. Thus,
strictly speaking, separation of variables does not work for Poisson’s equation.

• The strategy will be similar to that in Example 68, by considering a “translation” so that the forcing term
f is now zero, but we transfer this forcing term f to the boundary conditions. This will be elaborated and
guided in HW 8 Exercise 5. The following example also covers this (with a different forcing function and
a slight variant of the strategy covered in HW 8 Exercise 5).
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Example 70. Fully inhomogeneous Poisson’s equation on a square.a Solve the following Poisson’s equa-
tion on a square: 

−uxx(x, y)− uyy(x, y) = x in (0, 1)× (0, 1),

u(0, y) = 1 on {x = 0} × [0, 1],

u(1, y) = 1 on {x = 1} × [0, 1],

u(x, 0) = 1 on [0, 1]× {y = 0},
u(x, 1) = 1 on [0, 1]× {y = 1}.

(411)

Suggested Solution:
Step 1: Transferring Forcing Term to Boundary Conditions. Following the remarks from the previous
page, one should try to “transfer” the forcing term f(x, y) = x to the boundary conditions. This can
be done by observing that

−uxx − uyy = x

−(uxx + x)− uyy = 0

−
(
u+

x3

6
+Ax+B

)
xx

− uyy = 0

−
(
u+

x3

6
+Ax+B

)
xx

−
(
u+

x3

6
+Ax+B

)
yy

= 0.

(412)

Here, we obtain x3

6 +Ax+B by integrating x with respect to x twice (A and B are the resulting arbitrary
constants). Furthermore, this does not depends on y, so any partial derivatives in y will cause the term
to vanish. Then, we use the substitution w(x, y) = u(x, y) + x3

6 +Ax+B. Thus, we have

• w(x, 0) = u(x, 0) + x3

6 +Ax+B = x3

6 +Ax+B + 1.

• w(x, 1) = u(x, 1) + x3

6 +Ax+B = x3

6 +Ax+B + 1.

• w(0, y) = u(0, y) + 03

6 +A(0) +B = B + 1.

• w(1, y) = u(1, y) + 13

6 +A(1) +B = A+B + 7
6 .

Note that since A and B are arbitrary (ie we could have picked any A and B to do the substitution and
it will still work), I’ll pick B = −1 (so that B + 1 = 0 to simplify a lot of these terms) and A = 0 (so that
we have lesser terms to deal with). This implies that we are now solving:

−wxx(x, y)− wyy(x, y) = 0 in (0, 1)× (0, 1),

w(0, y) = 0 on {x = 0} × [0, 1],

w(1, y) =
1

6
on {x = 1} × [0, 1],

w(x, 0) =
x3

6
on [0, 1]× {y = 0},

w(x, 1) =
x3

6
on [0, 1]× {y = 1}.

(413)

Remark: In HW 8 Exercise 5, if you follow through the steps there, you will realize that this is roughly
the same as those steps given.
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Step 2: Separating Laplace’s Equation into two, with homogeneous in one direction for each.

Let w(x, y) = w1(x, y) + w2(x, y), with

−(w1)xx(x, y)− (w1)yy(x, y) = 0 in (0, 1)× (0, 1),

(w1)(0, y) = 0 on {x = 0} × [0, 1],

(w1)(1, y) = 0 on {x = 1} × [0, 1],

(w1)(x, 0) =
x3

6
on [0, 1]× {y = 0},

(w1)(x, 1) =
x3

6
on [0, 1]× {y = 1},

(414)

and 

−(w2)xx(x, y)− (w2)yy(x, y) = 0 in (0, 1)× (0, 1),

(w2)(0, y) = 0 on {x = 0} × [0, 1],

(w2)(1, y) =
1

6
on {x = 1} × [0, 1],

(w2)(x, 0) = 0 on [0, 1]× {y = 0},
(w2)(x, 1) = 0 on [0, 1]× {y = 1}.

(415)

Step 3: Solve the resulting two separate Laplace’s equations.
For (415), by separation of variables, let (w1)(x, y) = X(x)Y (y) for non-trivial w1. Substituting this to
the Laplace’s equation and dividing by X(x)Y (y), we have

X ′′(x)

X(x)
= −Y

′′(y)

Y (y)
= λ.

Similar to Discussion Supplement 9, (w2)(x, 0) = 0 means X(x)Y (0) = 0 for all y ∈ [0, 1]. For non-trivial
w2, X can’t be the zero function so we must have Y (0) = 0. Similarly, we have Y (1) = 0. By viewing
−Y ′′(y)

Y (y) = λ, we must have λ ≥ 0 since − d2

dx2 is a self-adjoint differential operator with non-negative
eigenvalues.
If λ = 0, then Y ′′(y) = 0 so Y (y) = Ay + B. Using Y (0) = Y (1) = 0, one can deduce that A = B = 0
and thus Y (y) ≡ 0. We thus obtain the trivial solution for w1, which is not what we want. Thus, we have
for λ > 0,

Y ′′(y) = −λY (y), Y (0) = Y (1) = 0.

The solution is given by Y (y) = A sin(
√
λy) + B cos(

√
λy). Substituting Y (0) = 0 gives B = 0. Substi-

tuting Y (1) = 0 gives Y (1) = A sin(
√
λ) = 0, in which the solution is given by

√
λ = nπ, λn = n2π2 for

n ≥ 1, n ∈ N. The corresponding eigenfunctions are Yn(y) = sin(nπy).
For each λn, we solve a corresponding ODE in X. This is given by

X ′′
n(x) = λnXn(x) = n2π2Xn(x).

The solutions are given by
Xn(x) = C ′

n sinh(nπx) +D′
n cosh(nπx).

One minor disadvantage of this form is that though sinh vanishes at 0, cosh never vanishes. One can
then show that (this is also shown in lectures, 9.3.pdf) that an equivalent form is given by (with the 1
easily replaceable by any constants, with possibly different arbitrary constants),

Xn(x) = Cn sinh(nπx) +Dn sinh(nπ(1− x)).

The full solution is thus given by

(w1)(x, y) =
∑
n≥1

Xn(x)Yn(y)

=
∑
n≥1

sin(nπy)(Cn sinh(nπx) +Dn sinh(nπ(1− x)).
(416)
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To determine the Fourier coefficients Cn and Dn, we appeal to the inhomogeneous boundary conditions
in x (ie (w2)(0, y) = 0 and (w2)(0, y) =

1
6). Using (w2)(0, y) = 0, we have

0 = (w2)(0, y) =

∞∑
n=1

Dn sinh(nπ) sin(nπy). (417)

Let En = Dn sinh(nπ), we have
∞∑

n=1

En sin(nπy) = 0. (418)

We can thus determine the coefficients En by a standard Fourier series argument. For this case, we have
Em = (0,sin(mπy))

(sin(mπy),sin(mπy)) = 0 for every m ≥ 1,m ∈ N. (See Discussion Supplement 9.) This implies that
Dn = 0 too for each n ≥ 1.

Using (w2)(1, y) =
1
6 , we obtain

1

6
= (w2)(1, y) =

∞∑
n=1

Cn sinh(nπ) sin(nπy). (419)

Let Fn = Cn sinh(nπ), we have
∞∑

n=1

Fn sin(nπy) =
1

6
. (420)

Then, we have Fn = (1/6,sin(nπy))
(sin(nπy),sin(nπy)) for n ≥ 1, n ∈ N. One can compute

(sin(nπy), sin(nπy)) =

∫ 1

0

sin2(nπy)dy =
1

2
,

and

(1/6, sin(nπy)) =
1

6

∫ 1

0

sin(nπy)dy = − 1

6nπ
cos(nπy)|y=1

y=0 =
1

6nπ
(1− (−1)n).

This implies that Fn = 1−(−1)n

3nπ . This thus implies that Cn = Fn/(sinh(nπ)) = 1−(−1)n

3nπ sinh(nπ) for n ≥ 1.
Combining all that we have, the full solution is given by

(w1)(x, y) =

∞∑
n=1

1− (−1)n

3nπ sinh(nπ)
sin(nπy) sinh(nπx). (421)

We shall skip solving w1 as this follows from an exact same procedure! (You can treat it as an exercise
to see if you have understood the idea of separation of variables.)

Step 4: Combine them all. Recall that w(x, y) = (w1)(x, y) + (w2)(x, y), and this was obtained after a

substitution u(x, y) = w(x, y)− x3

6 + 1 (Recall A = 0 and B = −1). Thus, we have

u(x, y) = 1− x3

6
+

∞∑
n=1

1− (−1)n

3nπ sinh(nπ)
sin(nπx) sinh(nπy) + w1(x, y), (422)

where you have to put in w1 obtained by solving its corresponding Laplace’s equation.

aMarcus’s remark in lecture is that something as tedious as this will not appear in the exam, though personally, I think it makes
more sense to cover a tedious example in Discussion to see how different cases can be handled, and as a practice for separation of
variables. Thus, if any subset of these cases were given, you would know how to solve it.

Remark: The solution form (422) is consistent with the second last pointer before the Example - separation of
variables will not work. Literally, one can see that the solution cannot be written as the product of two functions
of their individual variables! (We can do that for w1 and w2, but not when combined together, and definitely
not when we have added (not multiply) a term in only the x variable.)
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11 Finals Revision.

Practice Questions - Set 1

As per usual, we assume that all unknown functions are sufficiently smooth, unless stated otherwise.

1. (10 points) Consider the PDE consisting of the unknown function u(x, y) given by

ux + 4xuy = 0, (423)

with boundary conditions {
u(x, 0) = e−x for all x ≥ 0

u(0, y) = y4 for all y ≥ 0.
(424)

Solve for u(x, y) for x, y > 0.

2. Consider the following PDE:

uxx(x, t)− 3uxt(x, t)− 4utt(x, t) = 0 for (x, t) ∈ R× (0,∞). (425)

(a) (4 points) Classify the type of second-order PDE in (425) (ie determine if it is elliptic, parabolic, or hyper-
bolic at each point (x, t) ∈ R× (0,∞)).

(b) (8 points) Find the general solution u(x, t) to (425).

(c) (5 points) Hence or otherwise, find the general solution u(x, t) to the following PDE

uxx(x, t)− 3uxt(x, t)− 4utt(x, t) = x− t for (x, t) ∈ R× (0,∞). (426)

3. Consider the diffusion equation on a bounded domain with arbitrary initial data ϕ(x) on x ∈ [0, L] for some
finite L > 0, and arbitrary boundary data f(t) and g(t) on x = 0 and x = L respectively, given by

ut(x, t) = Duxx(x, t) in R× (0, L),

u(x, 0) = ϕ(x) on R× {t = 0},
u(0, t) = f(t) on {x = 0} × (0,∞),

u(b, t) = g(t) on {x = b} × (0,∞).

(427)

(a) (3 points) We know that the PDE above satisfies the maximum principle. Write down sufficient condition(s)
on ϕ(x), f(t), and g(t) such that the solution u(x, t) is bounded for all (x, t) ∈ R× (0,∞).

(b) (7 points) Use the maximum principle to prove that the solution to (427) is unique if it exists.
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4. (15 points) The Stokes’ First Problem is one of a handful of known exact solutions of the Navier-Stokes
equation, which describes how fluid lying on a flat plate starts to move when the plate is set in motion. Let
u(z, t) denote the velocity of fluid in the x−direction located at a perpendicular distance z from the plate. The
PDE satisfied by u(z, t) is given by

ut(z, t) = νuzz(z, t) in (0,∞)× (0,∞),

u(z, 0) = 0 on [0,∞)× {t = 0},
u(0, t) = U on {z = 0} × (0,∞),

u(+∞, t) = 0 on {z = +∞}× (0,∞).

(428)

Here, U represents the velocity of the plate and ν represents the kinematic viscosity of the fluid, which are both
positive constants. Find the functional form of the similarity solution to (428) of the form

u(z, t) = H(t)f

(
z

W (t)

)
.

(a) In your solution, you should determine the functions H and W .

(b) You should also determine the ODE satisfied by f , together with the corresponding boundary conditions for
f .

5.

(a) (9 points) Solve the following wave equation for u(x, t) on the half-line with Dirichlet boundary conditions,
given by 

utt(x, t) = uxx(x, t) in (0,∞)× (0,∞),

u(x, 0) = sin(x) on [0,∞)× {t = 0},
ut(x, 0) = x on [0,∞)× {t = 0},
u(0, t) = 0 on {x = 0} × [0,∞).

(429)

You will need to simplify your answer as far as possible.

(b) (6 points) Hence or otherwise, solve the following wave equation for v(x, t) on the half-line with a source
term at x = 0, given by 

vtt(x, t) = vxx(x, t) in (0,∞)× (0,∞),

v(x, 0) = sin(x) on [0,∞)× {t = 0},
vt(x, 0) = x on [0,∞)× {t = 0},
v(0, t) = t3 on {x = 0} × [0,∞).

(430)

For this part of the question, writing down the correct integral(s) to be evaluated will suffice.

Hint: Consider an appropriate substitution.

6. (20 points) Solve the following Laplace’s equation on a square [0, 1] × [0, 1] with inhomogeneous boundary
conditions: 

−uxx(x, y)− uyy(x, y) = 0 in (0, 1)× (0, 1),

u(0, y) = 0 on {x = 0} × [0, 1],

u(1, y) = 1 on {x = 1} × [0, 1],

u(x, 0) = x on [0, 1]× {y = 0},
u(x, 1) = 0 on [0, 1]× {y = 1}.

(431)
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7. (15 points) Consider the diffusion equation with arbitrary initial data ϕ(x):{
ut(x, t) = Duxx(x, t) in R× (0,∞),

u(x, 0) = ϕ(x) on R× {t = 0}.
(432)

By considering the energy

E(t) =
1

2

∫ ∞

−∞
u2(x, t)dx, (433)

prove that the above diffusion equation has at most one u ∈ C2 solution, with u vanishing as x → +∞, and ux
vanishing as x→ −∞.
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Practice Questions - Set 2

1. Let us consider an observer in 2D, with the observer’s position represented in Cartesian coordinates (x, y),
and the observer’s path parametrized by time t (that is, r(t) = (x(t), y(t))). With respect to a stationary observer,
the density of matter u(x, y, t) is described by the PDE:

ut + ux + e−tuy = 0 (434)

for t > 0, and x, y ∈ R. Assume that we have an initial distribution of matter at t = 0, given by u(x, y, 0) =

e−x2−y2

for (x, y) ∈ R2.

(i) (3 points) Given a position (x(t), y(t)) of the observer at time t, write down the velocity vector r′(t) describ-
ing the velocity of the observer such that the density of matter does not change relative to this observer.

(ii) (7 points) Hence, solve the PDE (434) for u(x, y, t), with (x, y, t) ∈ R2 × (0,∞).

2. (15 points) Consider the telegrapher’s equation with arbitrary initial data ϕ(x) and ψ(x), given by
utt + 2ut = 3uxx in R× (0,∞),

u(x, 0) = ϕ(x) on R× {t = 0},
ut(x, 0) = ψ(x) on R× {t = 0}.

(435)

In addition, consider the energy function

E(t) =
1

2

∫ ∞

0

(ut)
2(x, t) + α(ux)

2(x, t)dx. (436)

With the help of the energy function and an appropriate value of α, prove that the solution to the telegrapher’s
equation with ut and ux vanishing as x→ ±∞ in (435) is unique if it exists.

3. (15 points) Solve the following diffusion equation for u(x, t) on the half-line with Neumann boundary
conditions, given by 

ut(x, t) = uxx(x, t) + 2022 in (0,∞)× (0,∞),

u(x, 0) = e−x2

on [0,∞)× {t = 0},
ux(0, t) = 0 on {x = 0} × (0,∞).

(437)

You will need to simplify your answer as far as possible.
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4. A droplet spreads under gravity on a horizontal surface. The height of the droplet is given by a function
h(x, t). It can be shown that the height of the droplet h(x, t) evolves according to the following simplified
version of the porous medium equation:

∂h

∂t
=

1

3

∂

∂x

(
h3
∂h

∂x

)
in (x, t) ∈ (−L,L)× (0,∞) (438)

for some finite L > 0 independent of time. In addition, we shall also impose the following physical boundary
conditions: h(±L, t) = 0.

(a) (7 points) Prove that the quantity V (t) =
∫ L

−L
h(x, t)dx representing the total volume of the droplet is a

constant function in t.

(b) (8 points) Find the functional form of the similarity solution to (438) of the form

h(x, t) = H(t)f

(
x

W (t)

)
,

where H and W are functions to be determined. For this problem, you do not have to determine the ODE
satisfied by f . You do not need to determine the corresponding boundary conditions too.

5. (20 points) Solve the following PDE on a bounded domain x ∈ (0, 1) with t > 0 for u(x, t) by separation of
variables: 

ut(x, t) = uxx(x, t)− u(x, t) in (0, 1)× (0,∞),

u(x, 0) = x on [0, 1]× {t = 0},
u(0, t) = 0 on {x = 0} × [0,∞),

u(1, t) = 0 on {x = 1} × [0,∞).

(439)

Hint: 1 is a constant independent of both x and t.

6. (15 points) Solve the following Poisson’s equation on a square [0, 1] × [0, 1] with homogeneous boundary
conditions for u(x, y): 

−uxx(x, y)− uyy(x, y) = x2 in (0, 1)× (0, 1),

u(0, y) = 0 on {x = 0} × [0, 1],

u(1, y) = 0 on {x = 1} × [0, 1],

u(x, 0) = 0 on [0, 1]× {y = 0},
u(x, 1) = 0 on [0, 1]× {y = 1}.

(440)

For this problem, you do not have to compute the Fourier coefficients explicitly, though you should write down
the formula and the corresponding integral that one should do to obtain the relevant coefficients.

Hint: Look for solutions that do not depend on y, ie u(x, y) = f(x), that solves the Poisson’s equation. Then,
determine f and use the substitution u(x, y) = f(x) + w(x, y).
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7. (10 points) Consider the diffusion equation on a bounded domain, solved with different initial data ϕi(x) on
x ∈ [0, L] with some finite L > 0 for i ∈ {1, 2}, with the same boundary data f(t) and g(t) on x = 0 and x = L
respectively, given by 

(ui)t(x, t) = Duxx(x, t) in R× (0, L),

(ui)(x, 0) = ϕi(x) on R× {t = 0},
(ui)(0, t) = f(t) on {x = 0} × (0,∞),

(ui)(b, t) = g(t) on {x = b} × (0,∞).

(441)

Prove that the solutions to (441) are stable with respect to the initial data in the following sense:

max
x∈[0,L]

|u1(x, t)− u2(x, t)| ≤ max
x∈[0,L]

|ϕ1(x)− ϕ2(x)| (442)

for any t > 0.

Hint: Apply Maximum principle.
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More problems:

1. (15 points) Consider the following modified wave equation with A ≥ 0:
(utt +Aut − uxx + u)(x, t) = 0 in R× (0,∞),

u(x, 0) = ϕ(x) on R× {t = 0},
ut(x, 0) = ψ(x) on R× {t = 0}.

(443)

By considering the energy

E(t) =
1

2

∫ ∞

−∞
(ut)

2(x, t) + (ux)
2(x, t) + u2(x, t)dx, (444)

prove that the above modified wave equation has at most one u ∈ C2 solution, with ux and ut vanishing as
x→ ±∞.
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