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1 Discussion 1

Summary for Lectures 1 and 2

Definition 1. Let A ⊂ Rn. The indicator function 1A is the function defined by

1A(x) =

{
1 if x ∈ A
0 if x /∈ A.

(1)

Definition 2. The norm ||.|| on Rn is defined to be the standard Euclidean norm on Rn.
Mathematically, for x = (x1, ..., xn) for a positive integer n, we have

||x|| =
√
x21 + x22 + ...+ x2n =

√√√√ n∑
i=1

x2i . (2)

Definition 3. An open ball in Rn centered at x with radius r ≥ 0 is denoted by Br(x).
Mathematically,

Br(x) = {y ∈ Rn : ||x− y|| < r}. (3)

Definition 4. Let A ⊂ Rn. We say that the subset A is bounded if there exists r > 0 such
that A ⊂ Br(0).

Definition 5. A function f : A ⊂ Rn → R is bounded if its image

{f(x) : x ∈ A} (4)

is a bounded subset of R.

Definition 6. A point x ∈ Rn is a boundary point of A ⊂ Rn if for any ε > 0, we have

1. Bε(x) ∩A is non-empty and

2. Bε(x) ∩Ac is non-empty

Notation: We denote

∂A := {x ∈ Rn : x is a boundary point of A} (5)

as the boundary of A.

Definition 7. The closure of the set A ⊂ Rn, denoted by A, is the union of A and the
boundary of A.
Mathematically,

A = A ∪ ∂A. (6)

Alternatively, one can characterize the closure of the set A as

A = {x ∈ Rn : ∀r > 0, Br(x) ∩A ̸= ∅}. (7)

Definition 8. Let A ⊂ Rn. We say that the set A is closed if

A = A. (8)
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Note the alternative characterization of closed sets in 32AH:

Definition 9. We say that a point x ∈ X is a limit point if there is a sequence {xi}i
contained inside X such that xi converges to x.

Definition 10. Let A ⊂ Rn. We say that the set A is closed if and only if it contains all of
its limit points. Mathematically, A possess the following property

If xi
i→∞−−−→ x and {xi}i ⊂ A, then x ∈ A. (9)

(This is because the limiting point x might only be in Rn and not necessarily be in A. Example:
A = (0,∞) ⊂ R, take the sequence xn = 1

n and note that 0 /∈ A.)

Definition 11. The support of a function f : A ⊂ Rn → R is the closure of the set

{x ∈ Rn : f(x) ̸= 0}. (10)

Mathematically, if we denote the support of a function as supp(f), it is thus defined as

supp(f) = {x ∈ Rn : f(x) ̸= 0}. (11)

Definition 12. In addition, we say that a function f : A ⊂ Rn → R has bounded support
if the support of the function f is bounded. Equivalently, there exists R > 0 such that
f(x) = 0 for ||x|| > R.

Example 13. Let A = {x ∈ R : x is even} and consider f(x) = 1A(x) for f : R→ R

• The set A = {...,−4,−2, 0, 2, 4, ...} is not bounded.

• The image of f , given by {f(x) : x ∈ A} = {0, 1}, is a bounded set. Thus, the function
f is bounded.

• One can check that ∂A = {...,−4,−2, 0, 2, 4, ...} = A.
x /∈ A: For x not in A, we can find an ε such that Bε(x) ∩A = ∅.
(Example: If x = 1.99, we pick ε = 0.005 and see the B0.005(1.99) = (1.985, 1.995)
and thus does not intersect A.)
x ∈ A: One can check that for any ε > 0, we have Bε(x)∩A ⊃ {x} ≠ ∅. Furthermore,
Bε(x) ∩ Ac is non-empty as the region outside of x is basically Ac and thus the open
ball centered about x will intersect with some points in Ac.

• This implies that the closure of A is given by

A = A ∪ ∂A = A ∪A = A.

• By the above point, A is a closed set.

• Since A, the support of f , is not bounded, we then we say that f does not have a
bounded support.

As mentioned in the lectures, for integrals of some function f over a set, say A, we can define
g(x) = 1A(x)f(x) and this is thus a function on Rn. Mathematically, we have∫

A

f(x)dV =

∫
Rn

1A(x)f(x)dV =

∫
Rn

g(x)dV.

It is thus sufficient for us to be able to define integrals on Rn. This is done by partitioning Rn into
dyadic (hyper) cubes, as explained below.
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Definition 14. Given a vector k = (k1, ..., kn) ⊂ Zn, the dyadic cube Ck,N is denoted by

Ck,N = {x = (x1, ..., xn) ∈ Rn :
ki
2N
≤ xi <

k1 + 1

2N
for 1 ≤ i ≤ n}. (12)

Intuitively, N represents the number of dyadic (“halfing”) divisions on a cube of side length 1. The
following diagram in R2 illustrates this.

• The first dyadic level (N = 1) corresponds to the black lines, cutting the square into 4 equal
squares of side length 1

2 .

• The next 3 dyadic levels forN = 2, 3, and 4 are given by blue, green and red lines respectively.

• The black cube corresponds to the dyadic cube C(9,6),4 in R2, since it is the 10th cube counting
from the left and the 7th cube counting from the bottom for N = 4. Matheamtically, we have

C(9,6),4 =

{
(x, y) ∈ R2 :

9

24
=

9

16
≤ x < 10

16
,
6

16
≤ y < 7

16

}
.

• Note that even though we are looking at a cube of side length 1, we are able to cover the
whole of Rn based on our definition of dyadic cubes. For instance, the orange cube in the
diagram above corresponds to C(8,0),3. We can pick components of k to be greater than 2N−1
(in this case, 23−1) since we allow the components of k to be any arbitrary integer (k ∈ Zn).

Proposition 15. The volume of a dyadic cube Ck,N in Rn, denoted by vol(Ck,N ), is 1
2Nn .

Proposition 16. For a fixed N , the collection of all dyadic cubes DN (Rn), also known as
the N -th dyadic partition of Rn, is given by

DN (Rn) := {Ck,N : k ∈ Zn}. (13)

Note that as the name suggests, DN (Rn) partitions Rn.
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Definition 17. Let X ⊂ R. (Replace all underlined words with words in blue for the
corresponding definitions for infimums and lower bounds.)

• A number a ∈ R is an upper bound lower bound for X if for every x ∈ X, we have
x ≤ a (x ≥ a)

• A number b ∈ R is the supremum infimum for X if for every upper bound (lower
bound) a of X, we have b ≤ a (b ≥ a).
Note that the supremeum (infimum) can be understood as the least upper bound
(greatest lower bound).

• We write b := sup(X) (b := inf(X)). If X is not bounded from above (bounded from
below), then we write sup(X) =∞ (inf(X) = −∞).

Theorem 18. (Completeness of R.) Every non-empty subset X ⊂ R has a supremum and
infimum. Moreover, sup(X) and inf(X) are unique.

Remark: For students who have/are taking a class in Analysis (131 series), the standard “com-
pleteness of R” talks about a non-empty subset bounded from above (bounded from below) has
a supremum (infimum) in R. However, since we are allowing sup and inf to take the value of ∞
and −∞, the third bullet point in Definition 17 takes care of the case in which the subset X is
unbounded.

Example 19. Essentially, inf and sup acts as the minimum and maximum to a large extent.
However, the minimum and maximum of a set requires that the element is in the set itself.
Consider the set X = [1, 2) and Y = (0,∞).

• inf(X) = 1 since 1 is a lower bound for X and for any other lower bounds for X,
1 will be greater or equals to that. Similarly, we have sup(X) = 2, inf(Y ) = 0, and
sup(Y ) =∞.

• Note that if we were to ask for max(X), this is equivalent to some a ∈ X such that
a ≥ x for all x ∈ X. Intuitively, you would want to pick 2. However, 2 is not in the
set. If you pick any other number that is smaller than 2, say 1.999, this is definitely an
upper bound for X since 1.9999 is in X and is larger than 1.999.

With that, we can define sums that approximate the integral of a bounded function with bounded
support f as follows.

Definition 20. Let f : Rn → R be a function and A ⊂ Rn be an arbitrary subset. Then, we
define the following quantities:

MA(f) := sup({f(x) : x ∈ A}), mA(f) := inf({f(x) : x ∈ A}). (14)

Definition 21. Let f : Rn → R be a bounded function with bounded support. The N -th
upper and lower sums of f are defined as

UN (f) :=
∑

C∈DN (Rn)

MC(f) vol(C), LN (f) :=
∑

C∈DN (Rn)

mC(f) vol(C) (15)
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By Proposition 15, since vol(C) = 1
2nN , we have

Proposition 22.

UN (f) :=
1

2nN

∑
C∈DN (Rn)

MC(f), LN (f) :=
1

2nN

∑
C∈DN (Rn)

mC(f). (16)

Furthermore, we have

Proposition 23. UN (f) is non-increasing (decreasing or constant) with respect to N (as N
increases) and LN (f) is non-decreasing (increasing or constant) with respect to N (as N
increases).

Intutively, this makes sense as the “overestimation” of the integral by UN (f) either decreases or
stays the same as N increases. Similarly, the “underestimation” of the integral by LN (f) either
decreases or stays (thus LN (f) either increases or stays constant) as N increases.
Let us look at an example as to how we can compute some of the N -th upper and lower sums.

Example 24. Denote A = {(x, y) ∈ R2 : y ≥ x and 0 ≤ x, y ≤ 1} and the function
f(x, y) = 1A(x, y). Compute U2(f) and L2(f). Use these to estimate

∫
A
f(x, y)dA.

Suggested Solution: Since A ⊂ [0, 1] × [0, 1], we can consider a square with side length
1. Note that since f = 1A, the image of f is the set {0, 1} and is thus a bounded set.
Furthermore, the support of f is a subset of A, which is a subset of [0, 1]× [0, 1], a bounded
subset of R2. Thus, f is a bounded function of bounded support. This implies that the
upper sum and lower sum makes sense by Definition 21. From the same definition, we can
compute U2(f) and L2(f) with the help of the following diagram as follows.

At the dyadic level N = 2, we have a total of 2nN = 24 = 16 squares. Note that f(x) = 1
for x in the blue shaded region corresponding to y ≥ x, and including the diagonal line
y = x and the two boundary lines y = 1 and x = 0.

Note that by definition of a dyadic cube (square in this case) as in Definition 14, we see that
for each square, the left and the bottom boundaries are included with only the bottom left
corner of the square included. In view of that, we will be including the 5 additional purple
squares above the line y = 1.
With that, we can characterize the 21 squares into the following:

• There are 3 squares labelled with a red tick in the graph above. Note that in these
squares Bi, f(x, y) = 0 on the entire squares. Thus,

mBi(f) =MBi(f) = 0.
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• There are a total of 6 squares Ci in the shaded region in which the line y = x does
not cut across into them directly. In these squares, f(x) = 1. Thus,

mCi(f) =MCi(f) = 1.

• There are a total of 3 squares Di labelled with a green tick in the graph above. Thus,
the included boundary misses y = x. Henceforth,

mDi(f) = 0,MDi(f) = 0.

• Similarly, there are 4 squares Ei along the diagonal in which y = x bisects each of
them diagonally. For each of these sqaures, there are points inside and outside of the
shaded region. This implies that

mEi(f) = 0,MEi(f) = 1.

• For the 5 purple squares Fi, note that the bottom left corner of the square lies on the
line y = 1, in which f(x, y) = 1 along this line. This implies that

mFi(f) = 0,MFi(f) = 1.

By proposition 22, we have

U2(f) =
15

16
, and L2(f) =

6

16
. (17)

since there are 15 squares with Meach square(f) = 1 and 6 squares with meach square(f) = 1.
An estimate for

∫
A
f(x, y)dA would be say the average of these two quantities, at ≈ 21

32 .
Since this is not exactly rigorous, any value in between L2(f) and U2(f) would work given
sufficient justification.

Remark: The problem would be greatly simplified if the domain excludes the line y = 1
(and possibly x = 0).
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Exercises:

Exercise 1. Let A = {(x, y) ∈ R2 : x2 + y2 < 1 and x ≥ 0}. Compute the following:

(i) ∂A, and

(ii) A.

Exercise 2. Let us consider dyadic cubes Ck,N in R3. Determine the value of k such that(
31
32 ,

65
64 , 1.01

)
∈ Ck,5.

Exercise 3. Let A and B be subsets of R such that A ⊂ B. Prove that

(i) sup(A) ≤ sup(B),

(ii) sup(−A) = − inf(A), and

(iii) inf(A) ≥ inf(B).

Exercise 4. Let A = {(x, y) ∈ R2 : x2 + y2 < 1} and let f(x) = 1A(x).
Compute the values of U1(f) and L1(f).

Partial Solutions/Hints:

• Exercise 1. (i) ∂A = {(x, y) ∈ R2 : (x2 + y2 = 1 and x ≥ 0) OR (y = 0 and − 1 ≤ x ≤ 1)},
(ii) A = {(x, y) ∈ R2 : x2 + y2 ≤ 1 and x ≥ 0}.

• Exercise 2. k = (31, 32, 32).

• Exercise 3. Expanding out the definitions for sup and inf should give you the required tools
to work with. Note that (iii) follows from (i) and (ii) if you think hard enough about it.

• Exercise 4. U1(f) = 1, L1(f) =
4
16 .
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2 Discussion 2

Summary for Lectures 3 - 5

Definition 25. Let f : Rn → R be a function and A ⊂ Rn be an arbitrary subset. Then, we
define the following quantities:

MA(f) := sup({f(x) : x ∈ A}), mA(f) := inf({f(x) : x ∈ A}). (18)

Definition 26. Let f : Rn → R be a bounded function with bounded support. The N -th
upper and lower sums of f are defined as

UN (f) :=
∑

C∈DN (Rn)

MC(f) vol(C), LN (f) :=
∑

C∈DN (Rn)

mC(f) vol(C) (19)

Since vol(C) = 1
2nN (see Discussion Supplement 1), we have

Proposition 27. Let f to be given as in Definition 21. Then,

UN (f) :=
1

2nN

∑
C∈DN (Rn)

MC(f), LN (f) :=
1

2nN

∑
C∈DN (Rn)

mC(f). (20)

Next, we define the upper integral U(f) and the lower integral L(f) as follows.

Definition 28. Let f to be given as in Definition 21. The upper and lower integrals of f
are defined as

U(f) := lim
N→∞

UN (f), L(f) := lim
N→∞

LN (f). (21)

Furthermore, we say that f is integrable if U(f) = L(f), with the integral of f defined as∫
Rn

f(x)dV = U(f) = L(f). (22)

Note that using Definition 21 to compute UN (f) and LN (f), and consequently U(f) and L(f),
might be tedious and challenging. Thus, instead of finding MC(f) and mC(f), it suffices to pick a
point x in each dyadic cube C. This motivates the following definitions and propositions relating
to what is known as Riemann integrals.

Definition 29. The N -th Riemann sum is defined as

RN (f) :=
∑

C∈DN (Rn)

f(xk,N ) vol(C), (23)

where xk,N is any arbitrary point in a given dyadic cube C ∈ DN (Rn).

Proposition 30. If f : Rn → R is integrable, then

lim
N→∞

RN (f) =

∫
Rn

f(x)dV. (24)

Note the following remarks:

• In general, Proposition 30 works only if we know that f is integrable.
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• Proposition 30 allows us to choose whichever point we want in a given dyadic cube. This
removes ambiguity from considering points along the boundary of the dyadic cubes (see
Discussion Supplement 1 for an example of the aforementioned remark).

• The requirement that f is integrable is necessary. A common counterexample would be the
dirichlet function on [0, 1].
Mathematically, it is given by the indicator function on the set Q ∩ [0, 1] (Here, Q refers to
the set of rational numbers). Explicitly,

1Q∩[0,1](x) =

{
1 if x ∈ Q ∩ [0, 1]

0 otherwise.
(25)

One can see that, 1Q∩[0,1] is a bounded function (since the output is either 0 or 1) with
bounded support (since we are looking at a subset of [0, 1, which itself is bounded).

However, one can show that UN (1Q∩[0,1]) = 1 and LN (1Q∩[0,1]) = 0 for any N ∈ N. Thus,

U(1Q∩[0,1]) = lim
N→∞

UN (1Q∩[0,1]) = lim
N→∞

1 = 1, (26)

and
L(1Q∩[0,1]) = lim

N→∞
LN (1Q∩[0,1]) = lim

N→∞
0 = 0. (27)

This implies that U(1Q∩[0,1]) = 1 ̸= 0 = L(1Q∩[0,1]) and thus is not an integrable function.

From this, we can see that the Riemann sums depends on our choice our choice of x, in the
sense that it is possible to achieve R(f) = 1

2 or in fact any real number between 0 and 1
inclusive.
( 1
2 can be attained such that for all the given dyadic cubes at a given dyadic level N , we can

pick x to be a rational number for half of the cubes and x to be irrational for the other half
of the cubes. Note that this is possible as any dyadic cube C ⊆ R contains infinitely many
rational and irrational numbers.)
This implies that Proposition 30 fails.

Theorem 31. Let f, g : Rn → R be two integrable functions. Then, we have the following
properties.

(i) f + g is integrable, and∫
Rn

(f + g)(x)dV =

∫
Rn

f(x)dV +

∫
Rn

g(x)dV. (28)

(ii) If λ ∈ R, then λf is integrable and∫
Rn

λf(x)dV = λ

∫
Rn

f(x)dV. (29)

(iii) If f(x) ≤ g(x) for all x ∈ Rn, then∫
Rn

f(x)dV ≤
∫
Rn

g(x)dV. (30)

(iv) (Triangle Inequality) |f |(x) := |f(x)| is integrable with∣∣∣∣∫
Rn

f(x)dV

∣∣∣∣ ≤ ∫
Rn

|f |(x)dV (31)

(v) Let f : Rn → R and g : Rm → R be two integrable functions. Then, h : Rn+m → R
with h(x,y) = f(x)g(y) defines an integrable function on Rn+m, with∫

Rn+m

h(x,y)dV =

∫
Rn

f(x)dV

∫
Rm

g(y)dV (32)
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Definition 32. For any function f : Rn → R, we define two auxillary functions f+ and f−

as follows:

f+(x) = f(x)1{x∈Rn:f(x)≥0}(x), f−(x) = −f(x)1{x∈Rn:f(x)≤0}(x). (33)

Furthermore, note that
f = f+ − f−. (34)

Intuitively, Definition 32 decomposes f into the positive and the negative portions. For the negative
“portion”, the sign of it is flipped so that both f+(x) ≥ 0 and f−(x) ≥ 0 for all x ∈ Rn.

Corollary 33. A bounded function f with bounded support is integrable if and only if both
f+ and f− are integrable.

For practice purposes, we shall try to prove the corollary above, below.

Proof:
(→). Suppose that f is integrable.

To show that f+ is integrable,

• By (iv) of Theorem 31, we have that |f | is integrable.

• Note that we can write f+ in terms of f as follows:

f+ =
1

2
(|f |+ f), f− =

1

2
(|f | − f). (35)

• Since |f | is integrable and f is integrable (by assumption), then |f |+ f is integrable by (i) of
Theorem 31.

• Since 1
2 ∈ R, then by (ii) of Theorem 31, 1

2 (|f |+ f) is integrable.

• By the decomposition in (35), we have that f+ is integrable.

It might be tempting to say that f− is integrable by a “similar” argument. You will be right if you
say that except for just one small detail; the negative sign! This is italicized in the proof below.
To show that f− is integrable,

• By (iv) of Theorem 31, we have that |f | is integrable.

• From (35), we have the corresponding decomposition of f−.

• Since f is integrable and −1 ∈ R, we have that (−1)f = −f is integrable.

• Since |f | is integrable and −f is integrable (by assumption), then |f | + (−f) = |f | − f is
integrable by (i) of Theorem 31.

• Since 1
2 ∈ R, then by (ii) of Theorem 31, 1

2 (|f | − f) is integrable.

• By the decomposition in (35), we conclude f− is integrable.

(←). For the other direction, we assume that f+ and f− are integrable.

• Since f− is integrable, by (ii) of Theorem 31, since −1 ∈ R, then −f− is integrable.

• Since f+ and −f− are both integrable, we have f = f+ +(−f−) = f+− f− is integrable, as
required.

Remark: Note that we are a little “chatty” with the proof here, but this illustrates what a detailed
proof is (well, I could be more rigorous with saying that a + (−b) = a − b by how this is defined
for real numbers, but this should be sufficient). If we want our proof to be succinct, it is okay to
leave out certain minor details, such as −1 ∈ R if you think that it is not important (this might not
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be the case in an abstract algebra class, since it might not be clear that certain elements belong to
the “set” that we are working with). However, “important” is always subjective and varies across
fields in Mathematics, and the art of “choosing what to include” is a skill that you get better at as
you take more math classes!
More definitions below:

Definition 34. Let A ⊂ Rn. If 1A : Rn → R is integrable, then the n−dimensional volume
of A, voln(A), is

voln(A) :=

∫
Rn

1AdV. (36)

Definition 35. Let f : Rn → R be a function, and let A ⊂ Rn. The oscillation of f over A,
oscA(f). is defined as

oscA(f) :=MA(f)−mA(f) = sup
x∈A

f(x)− inf
x∈A

f(x) (37)

Theorem 36. A function f : Rn → R is integrable if and only if

(i) f is bounded with bounded support, and

(ii) For all ε > 0, there exists N ∈ N such that∑
{C∈DN (Rn):oscA(f)>ε}

voln C < ε. (38)

Intuitively, (ii) reads as the “total volume” of dyadic cubes in which the oscillation is large in each
of these dyadic cubes.
To prove the theorem that a continuous function with bounded support is integrable, we would
need to introduce some of the key terminologies in Mathematical Analysis as follows.

Theorem 37. (Elegance is not required.) Let ε > 0, and let u be a function of ε such that
u(ε)→ 0 as ε→ 0. We say that a sequence {xi}i ⊂ Rn converges to some x ∈ Rn if

• For every ε > 0, there exists N ∈ N such that for all n ≥ N , we have ||xn − x|| < ε.

• For every ε > 0. there existsM ∈ N such that for allm ≥M , we have ||xn−x|| < u(ε).

Intuitively, for a given ε > 0, if you can show that ||xn − x|| < 32ε or say ||xn − x|| < ε
1

2021 for
instance, then this is sufficient to show that xn converges to x.
Next, we recall some definitions and properties of “continuity” below. (These are concepts covered
in 32AH, but we shall recap them here for students who did not take 32AH.) For the definitions
below, let n,m be positive integers that are possibly different.

Definition 38. Let X ⊂ Rn. We say that a function f : X → Rm is continuous at a point
x ∈ X if it satisfies the following property:
For all ε > 0, there exists a δ > 0 such that for all y ∈ X,

0 < ||x− y|| < δ =⇒ ||f(x)− f(y)|| < ε. (39)
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Definition 39. Let X ⊂ Rn. We say that a function f : X → Rm is continuous (on the set
X) if it satisfies the following property:
For all ε > 0 and x ∈ X, there exists a δ > 0 such that for all y ∈ X,

0 < ||x− y|| < δ =⇒ ||f(x)− f(y)|| < ε. (40)

Alternatively, we say that f is continuous on X if for every point x ∈ X, f is continuous at
x

(Note the difference in the two definitions above; the former corresponds to continuity of f at a
point, the latter corresponds to the continuity of f on a set!)

Definition 40. Let X ⊂ Rn. We say that a function f : X → Rm is uniformly continuous
if it satisfies the following property:
For all ε > 0, there exists a δ > 0 such that for all x,y ∈ X,

0 < ||x− y|| < δ =⇒ ||f(x)− f(y)|| < ε. (41)

Here, the difference is that given an arbitrary ε > 0, our choice of δ can depend on x if all we have
to show is that f is continuous. However, if we want to show that f is uniformly continuous, our
choice of δ must not depend on x.
(Thus the function is “uniformly” continuous since we do not have to “adjust” the value of δ if say
we have some x ∈ X that happens to be troublesome.)

Theorem 41. (Continuity is equivalent to sequential continuity.) Let X ⊂ Rn, f : X →
Rm be a function and x ∈ X be some arbitrary chosen point in X. Then, the following
statements are equivalent:

• f is continuous at x.

• For every sequence {xi} converging to x, the sequence {f(xi)} converges to f(x).

Analogously, one can combine Definition 40 with Theorem 41 to obtain the following.

Theorem 42. (Uniform continuity is equivalent to sequential uniform continuity.) Let X ⊂
Rn, f : X → Rm be a function. Then, the following statements are equivalent:

• f is uniformly continuous on X.

• For any two sequences {xi}i, {yi}i ⊂ X such that ||xi − yi|| converges to 0, then
||f(xi)− f(yi)|| converges to 0 as i tends to∞.

Next, we shall introduce the notion of compact subsets of Rn. For the purpose of this class, the
abstract definition is not required. Instead, we can identify compact subsets of Rn as subsets
satisfying certain properties.

Theorem 43. (Bolzano-Weierstrass Theorem on Rn.) Let K ⊂ Rn. If K is compact, then
any sequence in K has a convergent subsequence in K.
Mathematically, given any {xi}i ⊂ K, there exists an x ∈ K and a subsequence {xij}j ⊂ K
such that

lim
j→∞

xij = x. (42)

Theorem 44. (Heine-Borel Property on Rn.) Let K ⊂ Rn. We say that K is compact if and
only if K is both closed and bounded.

(Recall the definition of closed in Discussion Supplement 1.)
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Theorem 45. Let K ⊂ Rn, K compact, and let f : K → Rm be continuous. Then f is
uniformly continuous on f .

This means if we know that f is continuous, and the domain is a compact subset of Rn, we can
upgrade the “continuity” property of f such that f is now uniformly continuous on K.
With that, we end off the following theorem:

Theorem 46. Let f : Rn → R. If f is continuous with bounded support, then f is integrable.

With some of these definitions and theorems in, let us look at some examples.
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Example 47. Let f : (0,∞) → (0,∞) be such that f(x) = 1
x . Then, f is continuous on

(0,∞) but not uniformly continuous on (0,∞).

Intuitively, although 0 is excluded from the domain, if we force ourselves to pick some x
close enough to 0, it is hard to obtain the same bound “|f(x) − f(y)| < ε” using a δ that
does not depend on x (since if x is close enough, f(x) = 1

x gets arbitrarily large, and you
would want to “reduce the size of δ” so that f(y) = 1

y gets closer to 1
x so that we can reduce

their distance down to ε).

Now, for the rigorous proof.

f is continuous on (0,∞). By the definition of (“plain”) continuity, let ε > 0 and x ∈ (0,∞).
This means that ε and x are fixed from the start. To complete the proof, we would like to
find δ > 0 such that if for any y ∈ (0,∞), if 0 < |x− y| < δ, then we have |f(x)− f(y)| < ε.
Note that

|f(x)− f(y)| =
∣∣∣∣ 1x − 1

y

∣∣∣∣ = ∣∣∣∣y − xxy

∣∣∣∣ . (43)

Since |x − y| < δ and x is fixed, it suffices for us to find an upper bound for
∣∣∣ 1y ∣∣∣ or a lower

bound for y (note that y ∈ (0,∞), so the absolute sign does not matter).
As we are free to pick whatever δ > 0 that we like, we shall restrict our choice of δ to those
in which δ ≤ x

2 (this is perfectly legal since x > 0 so we do have some room to choose δ > 0
from). Therefore, 0 < |x − y| < δ implies that x ̸= y and x − y > −δ and x − y < δ ≤ x

2 .
From the third inequality, we have y > x

2 and thus 1
y <

2
x . Back to (43), we have

|f(x)− f(y)| =
∣∣∣∣y − xxy

∣∣∣∣ < δ

x

2

x
=

2δ

x2
. (44)

Hence, if we choose δ ≤ x2ε
2 , then |f(x)− f(y)| < ε.

Tallying our choice of δ, as long as we pick δ = min{x2 ,
εx2

2 }, we are good to go! This
concludes the proof.

f is not uniformly continuous on (0,∞).
Just because our choice of δ above depends on x, it does not directly prove that f is not
uniformly continuous (there could be other choices of δ that do not depend on x). One
would think of a “counterexample” here. However, what constitutes as a “counterexample”?
Recall that f is uniformly continuous if

∀ε > 0,∃δ > 0,∀x, y ∈ (0,∞), (0 < |x− y| < δ =⇒ |f(x)− f(y)| < ε).

By de Morgan’s law, we can negate the statement to understand what is meant by “not
uniformly continuous”. Thus, we say that f is not uniformly continuous if

¬ (∀ε > 0,∃δ > 0,∀x, y ∈ (0,∞), (0 < |x− y| < δ =⇒ |f(x)− f(y)| < ε))

∃ε > 0,∀δ > 0,∃x, y ∈ (0,∞),¬(0 < |x− y| < δ =⇒ |f(x)− f(y)| < ε)

∃ε > 0,∀δ > 0,∃x, y ∈ (0,∞), 0 < |x− y| < δ and |f(x)− f(y)| ≥ ε.
(45)

Thus, to produce the counterexample, we have to submit a value of ε > 0. Let us consider
ε = 1. (If you can understand the argument below, you will see that any choice of ε > 0
should work.) Then, let δ > 0 be given. Now, pick a positive integer N > 0 sufficiently
large such that N >

√
δ, and consider x = 1

N and y = 1
N+1 (such choices are legal since

N > 0 and thus x, y ∈ (0,∞)). Indeed, we can check that

0 <

∣∣∣∣ 1N − 1

N + 1

∣∣∣∣ = ∣∣∣∣ 1

N(N + 1)

∣∣∣∣ < 1

N2
< δ (46)

and
|f(x)− f(y)| = |N − (N + 1)| = 1 ≥ 1. (47)

Thus, f is not uniformly continuous on (0,∞).
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Example 48. Let us fix a set A = {(x, y) ∈ R2 : x = y}. By using the sequential criterion
for continuity, show that the function f : R2 → R given by f(x, y) = 1A(x, y) is not
continuous on R2.

Recall that f is continuous on R2 if it is continuous at every (x, y) ∈ R2. Thus, f is not
continuous on R2 if there exists a point (x, y) ∈ Rn in which f is not continuous.

Recall that by sequential continuity, f is continuous at a given (x, y) if for every a sequence
(xn, yn) ⊂ R2 converging to (x, y), we have f(xn, yn) converging to f(x, y). Thus, to prove
that f is not continuous at some (x, y) by sequential continuity, it is sufficient to show that
there is a sequence (xn, yn) converging to (x, y) but f(xn, yn) does not converge to f(x, y).

Pick say (x, y) = (1, 1), and look at the sequence {
(
1 + 1

n , 1 +
1
n

)
}n. One can see

that
(
1 + 1

n , 1 +
1
n

)
converges to (1, 1) as n tends to ∞, but since f

(
1 + 1

n , 1 +
1
n

)
=

1A
(
1 + 1

n , 1 +
1
n

)
= 0 for every n, then

lim
n→∞

f

(
1 +

1

n
, 1 +

1

n

)
= lim

n→∞
0 = 0 ̸= f(1, 1).

Thus, f is not (sequentially) continuous on R2.
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Exercises:

Exercise 5. Let n be any positive integer and x0 be an arbitrary point in Rn. Define f :
Rn → R by f(x) = 1{x∈Rn:x=x0}(x). By computing UN (f) and LN (f) for arbitrary N , use
Definition 28 to show that f is integrable on Rn, and∫

Rn

f(x)dV = 0. (48)

Exercise 6. Let X ⊂ Rn, f : X → Rm, and K be a positive real number. We say that f is
K-Lipschitz if for every x,y ∈ X, we have

||f(x)− f(y)|| ≤ K||x− y||. (49)

Prove that f is uniformly continuous on X.

Exercise 7. (Well-definedness of (i) of Theorem 31). Note that in (i), it was mentioned
that f and g are integrable implies that f + g is integrable. Strictly speaking, we can talk
only about integrability of f + g when it is a bounded function of bounded support. The
purpose of this exercise is to prove that f + g indeed possesses these properties.
(Notation for this Exercise: ⊆ means “subset of or equals to”. For the entire 32BH class in
general, ⊂ is the same as saying ⊆.)

Thus, let us suppose that f, g : Rn → R are bounded functions with bounded support.
(Note: (ii) and (iii) are optional but challenging. Go for it if you are up for a challenge!)

(i) Show that f + g is bounded.

(ii) Prove the following set relation: For any two subsets A,B of Rn,

A ⊆ B =⇒ A ⊆ B. (50)

Here, the overline represents “closure” as defined in Discussion Supplement 1.

(iii) Prove the following set relation: For any two subsets A,B of Rn,

A ∪B = A ∪B. (51)

(iv) By using (ii) and (iii), prove the following set relation:

supp(f + g) ⊆ supp(f) ∪ supp(g). (52)

(Recall that supp(h) here means support of a given function h, defined by
supp(h) = {x ∈ Rn : h(x) ̸= 0}.)

(v) Use (iv) to prove that f + g is a function with bounded support.

(vi) Is it true that
supp(f + g) ⊇ supp(f) ∪ supp(g)? (53)

Note that if (53) is true, together with (52), we would have

supp(f + g) = supp(f) ∪ supp(g). (54)

Exercise 8. Let f : Rn → R be a continuous function. Suppose that there exists a compact
set A such that {x ∈ Rn : f(x) ̸= 0} ⊂ A. Prove that f is integrable.
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Partial Solutions/Hints:

• Exercise 5. One can show that UN (f) = 1
2nN and LN (f) = 0. Thus, U(f) = L(f) = 0, and

therefore, the required integral is 0.

• Exercise 6. Check directly by definition. For any given ε > 0, you should choose δ = ε
K .

• Solution to Exercise 7 (ii). (Note that this is done purely by expanding the definition of
closure and boundary of a set. It is possible to do this in a simpler way using properties of
open and closed sets.) Assume that A ⊆ B. To show that A = A ∪ ∂A ⊆ B ∪ ∂B = B, we
pick an element x ∈ A ∪ ∂A.

– If x ∈ A, then by A ⊆ B, x ∈ B, and thus x ∈ B ∪ ∂B = B (since B ⊆ B ∪ ∂B).

– If x ∈ ∂A, then by definition of ∂A, for every ε > 0, Bε(x) ∩A ̸= ∅ and Bε(x) ∩Ac ̸= ∅.
– Note that Bε(x) ∩ B ⊇ Bε(x) ∩ A ̸= ∅ (since A ⊆ B and we use the definition of ∂A in

the second step) implies that Bε(x) ∩B ̸= ∅.
– If x ∈ B to begin with, then x ∈ B ∪ ∂B = B immediately. Thus, it suffices to consider
x /∈ B, i.e, x ∈ Bc.

– This implies that Bε(x) ∩ Bc ⊇ Bε(x) ∩ {x} ⊇ {x} ∩ {x} = {x} ≠ ∅. This is because if
x ∈ Bc, the set Bc must contain at least the element x and thus {x} ⊆ Bc. Furthermore,
the open ball Bε(x) must contain the element x if ε > 0, and thus Bε(x) ⊇ {x}.

– Combining Bε(x) ∩ B ̸= ∅ and Bε(x) ∩ Bc ̸= ∅, we have that x ∈ ∂B and thus x ∈
B ∪ ∂B = B.

• Solution to Exercise 7 (iii).
For A ∪B ⊆ A ∪B,

– Note that
A ⊆ A ∪B −−−−−→

apply (ii)
A ⊆ A ∪B,

B ⊆ A ∪B −−−−−→
apply (ii)

B ⊆ A ∪B, and thus

A ∪B ⊆ A ∪B.

(55)

For A ∪B ⊆ A ∪B,

(a) Equivalently, we would like to show that

A ∪B ∪ ∂(A ∪B) ⊆ A ∪B ∪ ∂A ∪ ∂B.

Take an element x ∈ A ∪ B ∪ ∂(A ∪ B). If x ∈ A or x ∈ B, then x ∈ A ∪ B and thus
x ∈ (A ∪B) ∪ ∂A ∪ ∂B and thus appears on the right hand side.

(b) Thus, it suffices to show that if x ∈ ∂(A ∪B), then x ∈ A ∪B ∪ ∂A ∪ ∂B.

(c) Since x ∈ ∂(A ∪ B), by definition, for all ε > 0, we have Bε(x) ∩ (A ∪ B) ̸= ∅ and
Bε(x) ∩ (A ∪B)c ̸= ∅.

(d) If x ∈ A or x ∈ B, then we are done (since x ∈ A ∪ B ∪ ∂A ∪ ∂B, and thus right hand
side is true). Thus, we will work with x ∈ (A ∪B)c.

(e) By (c), we have Bε(x) ∩ (A ∪B) = (Bε(x) ∩ A) ∪ (Bε(x) ∩B) ̸= ∅. Since this set is not
empty, either Bε(x) ∩A ̸= ∅ or Bε(x) ∩B ̸= ∅

(f) Without loss of generality, suppose that Bε(x) ∩A ̸= ∅.
(g) By (c), we have Bε(x) ∩ (A ∪ B)c = Bε(x) ∩ Ac ∩ Bc ̸= ∅. Since Bε(x) ∩ Ac ⊇ Bε(x) ∩

Ac ∩Bc ̸= ∅, we have Bε(x) ∩Ac ̸= ∅.
(h) Summarizing the two bullet points above, we have Bε(x) ∩ A ̸= ∅ and Bε(x) ∩ Ac ̸= ∅.

Thus, x ∈ ∂A.

(i) Suppose instead that in (e) and (f), we have Bε(x) ∩ B ̸= ∅. One can repeat argument
(g) and (h) to show that x ∈ ∂B.

(j) In either cases, we have x ∈ ∂A or x ∈ ∂B. Equivalently, x ∈ ∂A ∪ ∂B. Thus, x ∈
A ∪B ∪ ∂A ∪ ∂B, as required.
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• Exercise 7 (iv). First show that

{x ∈ Rn : f(x) + g(x) ̸= 0} ⊆ {x ∈ Rn : f(x) ̸= 0} ∪ {x ∈ Rn : g(x) ̸= 0}.

Then, apply (ii), (iii), and the definition of supp.

• Exercise 7 (v). Recall the definition of bounded support, or in particular, what it means for
a subset of Rn to be bounded.

• Exercise 7 (vi). Consider f = 1[0,1] and g = −1[0,1]. Note that f + g = 0 (the zero function),
and thus supp(f + g) = ∅.

• Exercise 8. Apply the Heine Borel property of Rn to deduce that A is both closed and
bounded. Recall that a set A is closed if A = A (see Discussion Supplement 1). Use the
given condition and Exercise 7(ii) to show that the support of f is a subset of A, which is
bounded. Now, apply Theorem 46.
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3 Discussion 3

Summary for Lectures 6 - 7.

Before we begin, we start off with a review on two important theorems which will be used in this
Discussion Supplement.

Theorem 49. (Heine-Borel Property on Rn.) Let K ⊂ Rn. We say that K is compact if and
only if K is both closed and bounded.

Theorem 50. Let K ⊂ Rn, K compact, and let f : K → Rm be continuous. Then f is
uniformly continuous on f .

We shall explicitly state one of the theorems used in Lecture 6 in the proof of Theorem 46 below.

Theorem 51. (Extreme Value Theorem on Rn.) Let K ⊂ Rn, K compact, and let f : K →
Rm be continuous. The range of f , given by

ran(f) = {f(x) : x ∈ K} (56)

is compact. In particular, the range of f is closed and bounded subset of Rm. This further
implies that f is a bounded function.

Recall the following result from the end of Lecture 5/start of Lecture 6:

Theorem 52. Let f : Rn → R. If f is continuous with bounded support, then f is integrable.

(Note that for the integral to be well-defined, we require that f is also bounded. This follows from
the fact that f = 0 outside of supp(f), and f is bounded on supp(f), which is closed and bounded,
and thus f is bounded by the Extreme Value Theorem in Rn.)

From the Challenge Problem Set 1, we also have the following theorem:

Theorem 53. Let f : Rn → R be a bounded function with bounded support. Then, f is
integrable if and only if f is continuous almost everywhere.

For specific details on what “almost everywhere” means, see Challenge Problem Set 1. Roughly
speaking, the set of discontinuity is countable (that is, either finite, or countably infinite like Q).

As we are forced to define integrals on Rn, the first theorem is rarely useful due to the use of
indicator functions to “cutoff” the function at certain points, which results in points of disconti-
nuity. In contrast, since the indicator function only creates additional discontinuity at the “cutoff
points”, if the original function is continuous (almost everywhere), the resulting function obtained
by multiplying with a “cutoff” function remains continuous almost everywhere. One should refer
to the following example to observe the theorems in action!



Winter 22 MATH32BH Discussion Supplements 21

Example 54. Let us consider the function f : (0,∞) → (0,∞) to be our (my) favorite
function f(x) = 1

x . Recall from Discussion Supplement 2 that on (0,∞), f is continuous
but not uniformly continuous.

Consider g(x) = f(x) · 11≤x≤3(x). Thus, the support of g is given by [1, 3] = [1, 3], which is
closed and bounded. Furthermore, g is continuous on [1, 3]. By Extreme Value Theorem, g
is bounded. In addition, note that:

• g(1) = 1
1 = 1 and g(3) = 1

3 , while g(x) = 0 for any x < 1 or x > 3. Thus, g is not
continuous at 1 or 3

• g is continuous on (−∞, 1) or (3,∞) (since it is now the constant function 0 outside
of [1, 3]).

• g is also continuous on (1, 3), since 1
x is continuous on (0,∞) and thus on (1, 3).

With the above points, we know that the set of discontinuity is given by {1, 3}, is finite
(and hence from Challenge Problem Set 1, it is of measure 0). Thus, g is continuous almost
everywhere, and thus integrable by Theorem 53. Note that we will not be able to apply
Theorem 46 since g has two discontinuous points, at 1 and 3.

Next, we consider h(x) = f(x) · 10≤x<∞(x). Recall that the indicator function is re-
ally necessary as we have only defined integrals on Rn. The support of h is given by
(0,∞) = [0,∞), which is not bounded. It does not make sense to define integrals in terms
of the definition introduced in this class.

Furthermore, we consider k(x) = f(x) · 10≤x<K(x) for some K > 0. The support of k is
given by (0,K) = [0,K]. Indeed, we now have that k has a bounded support. However, k
is not bounded as it is defined on (0,∞), with ran(f) = (0,∞) unbounded.

If we had considered l(x) = f(x) · 1K1≤x<K2(x) for some 0 < K1 < K2, this reduces to the
first case that we have discussed (replace 1 by K1 and 3 by K2). Indeed, l is integrable on
(K1,K2).
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With all the theory of integrations in, we are ready to compute some integrals in Rn.

Useful Properties:

Theorem 55. Let f, g : Rn → R be two integrable functions. Then, we have the following
properties.

(i) f + g is integrable, and∫
Rn

(f + g)(x)dV =

∫
Rn

f(x)dV +

∫
Rn

g(x)dV. (57)

(ii) If λ ∈ R, then λf is integrable and∫
Rn

λf(x)dV = λ

∫
Rn

f(x)dV. (58)

(iii) Let f : Rn → R and g : Rm → R be two integrable functions. Then, h : Rn+m → R
with h(x,y) = f(x)g(y) defines an integrable function on Rn+m, with∫

Rn+m

h(x,y)dV =

∫
Rn

f(x)dV

∫
Rm

g(y)dV (59)

Theorem 56. (Decomposition of Domains) Let K be a compact subset of Rn such that its
boundary ∂D has volume 0. Furthermore, let K = K1 ∪ K2, such that K1 and K2 are
compact, and K1 ∩K2 has volume 0.
Let f : Rn → K be a continuous function. Then f is integrable on K1 and K2 and∫

K

f(x)dA =

∫
K1

f(x)dA+

∫
K2

f(x)dA (60)

Theorem 57. (Fubini’s Theorem.) Let f : Rn → R be a continuous function that is bounded
with bounded support. Then,∫

Rn

f(x)dV =

∫ ∞

−∞
· · ·
(∫ ∞

−∞
f(x)dx1

)
· · · dxn (61)

This means that the order of integration does not matter!

Definition 58. Let f(x,y) : Rn × Rn → R be a function. (Here, x denotes the first n
variables and y denotes the next m variables.)
For a fixed x, the function fx : Rm → R is defined by

fx(y) := f(x,y). (62)

Similarly, for a fixed y, the function fy : Rn → R is defined by

fy(x) := f(x,y). (63)

Thus, we have the following generalization of Fubini’s Theorem:

Theorem 59. Let f(x,y) : Rn × Rm → R be an integrable function. Then, the functions
U(fx), L(fx), U(fy), and L(fy) are integrable with∫

Rn×Rm

fdV dW =

∫
Rn

U(fx)dV =

∫
Rn

L(fx)dV =

∫
Rm

U(fy)dW =

∫
Rm

L(fy)dW. (64)
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With regards to Fubini’s Theorem, here are some remarks:

• It is possible that f(x,y) is integrable yet fx(y) or fy(x) are not. Take for instance, (assuming
(x, y) ∈ R2)

f(x, y) :=


1 if 0 ≤ x < 1 and 0 ≤ y ≤ 1

1 if x = 1, y ∈ Q ∩ [0, 1]

0 if otherwise.
(65)

This function is integrable since the set of discontinuities is a subset of x = 1 with 0 ≤ y ≤ 1,
a one-dimensional set over a two-dimensional region. From Challenge Problem Set 1, we
know that the two-dimensional volume of such a one-dimensional set must be 0, and thus
the set of discontinuity is of measure 0.
(Note that if we are asking for the one-dimensional volume of Q∩ [0, 1], it is undefined. How-
ever, if we are asking for the two-dimensional volume of {1}×Q∩[0, 1], it is well-defined since
the indicator function over this set is integrable in R2! Furthermore, the non-integrability of
1Q∩[0,1] follows from the fact that this function is discontinuous on the entire [0, 1].)

Yet, we know that f(1, y) = 1[0,1]∩Q is not integrable in Discussion Supplement 2.

• U and L are there in case say f is integrable yet fx or fy are not. If they both are, then we
reduce this to the case of the original Fubini’s theorem, with a weakened assumption that f
only has to be integrable.

• The notation in (61) might be misleading. In actual fact, for arbitrary sets A ⊂ Rn which are
not boxes, it is possible for the limits of integration for the inner integrals to depend on the
outer variables. For example, ∫ y=2

y=0

∫ x=1

x=y/2

e−x2

dxdy. (66)

Notice that the limit of integration in
∫ x=1

x=y/2
e−x2

dx indeed depends on y.

• In view of the above example (66), note that performing the inner integral first would be
challenging as this would require us to know the general formula for the anti-derivative of
e−x2

. However, if we would want to seek help from Fubini’s Theorem, we can’t do a simple
swap since ∫ x=1

x=y/2

∫ y=2

y=0

e−x2

dydx (67)

does not make sense as the output is a function that depends on the value of y. Instead, one
should utilize Fubini’s Theorem in the following way. First, we write (66) as∫

R2

e−x2

1B(x, y)dA (68)

where B is the set in which we are integrating over. To determine the set B ⊂ R2, we would
have to draw a corresponding diagram corresponding to the region of integration in (66).
Note that the integral should read: “as y increases from 0 to 2, the x value ranges from y/2 to
1.” This allow us to draw the following diagram below. Looking at this shaded area labelled
as B, we could view the diagram in another way: “as x increases from 0 to 1, the y value
ranges from 0 to 2x.” Thus, (66) and (68) simplifies to∫ y=2

y=0

∫ x=1

x=y/2

e−x2

dxdy =

∫
R2

e−x2

1B(x, y)dA =

∫ x=0

x=1

∫ y=2x

y=0

e−x2

dydx. (69)

Now, the rightmost expression in (69) can be evaluated directly as follows:∫ x=0

x=1

∫ y=2x

y=0

e−x2

dydx =

∫ x=0

x=1

ye−x2

|y=2x
y=0 dx =

∫ x=0

x=1

2xe−x2

dx = −e−x2

|x=1
x=0 = 1− e−1.

(70)
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• Note that in the above example, the use of Fubini is justified in the sense of Theorem 59 not
57 for the same reason as our 1

x example, in which the indicator function creates disconti-
nuity at the “cutoff” points. Instead, we say that f is integrable because it is bounded with
bounded support, and continuous almost everywhere (by Theorem 53).

With that, let us look at another computational exercise that is slightly more involved.
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Example 60. Evaluate the double integral
∫ ∫

D
(x− y)dA where D is the region above the

x-axis bounded by y2 = 3x and y2 = 4− x.
Note that the curves y2 = 3x and y2 = 4 − x intersect at (x, y) = (1,

√
3). The region D is

shown below.

In addition, note that it is convenient to conduct the inner integral in the x direction (since
it is bounded above by the curve x = 4−y2 and below by y2/3). If we did the inner integral
in the y direction, we would have to split it up into two different cases; before x = 1, we
have 0 ≤ y ≤

√
3x and after x = 1 to x = 4, we have 0 ≤ y ≤

√
4− x. Furthermore, note

that the appearance of square roots might introduce some possibly challenging integrals.
Thus, the integral can thus be computed as follows:∫ ∫

D

(x− y)dA =

∫ √
3

0

∫ 4−y2

y2/3

(x− y)dxdy

=

∫ √
3

0

[
1

2
x2 − yx

]4−y2

y2/3

dy

=

∫ √
3

0

(
4

9
y4 +

4

3
y3 − 4y2 − 4y + 8

)
dy

=

[
4

45
y5 +

1

3
y4 − 4

3
y3 − 2y2 + 8y

]√3

0

=
24

5

√
3− 3.

(71)

Note that the use of Fubini’s is justified since (x−y)1D is a bounded function with bounded
support, and continuous almost everywhere.
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Exercises:

Exercise 9. Let f : [0, 1] × [0, 1] → R be the function defined as follows. For any (x, y) ∈
[0, 1]× [0, 1], we have

f(x, y) =


1/y2 if 0 < x < y < 1

−1/x2 if 0 < y < x < 1

0 if otherwise.
(72)

(i) Compute
∫ 1

0

∫ 1

0
f(x, y)dxdy.

(ii) Compute
∫ 1

0

∫ 1

0
f(x, y)dydx.

Exercise 10. Compute the following integral:∫ 1

−1

∫ (2−y)2

y2/3

(
3

2

√
x− 2y

)
dxdy. (73)

Exercise 11. Rewrite the integral∫ 1

−1

∫ 1

x2

∫ 1−y

0

f(x, y, z)dzdydx (74)

as an iterated integral in the order of dxdydz.

Exercise 12. Find the region E for which the triple integral∫ ∫ ∫
E

(1− x2 − 2y2 − 3z2)dV (75)

is maximized. Briefly explain your answer.
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Partial Solutions/Hints:

• Exercise 9. (i) yields 1 and (ii) yields −1. Fubini fails here because f(x, y) is not integrable
(because f is not bounded). See our favorite example on integrability of 1/x in Example 54
above and see if you can draw any similarities between this two-dimensional case and the
one-dimensional case in that example!
For the domain of integration, note that the line y = x splits the square [0, 1]× [0, 1] into half
along the diagonal, with f(x, y) = 1/y2 above the diagonal and −1/x2 below the diagonal.
Thus, to compute say

∫ 1

0
f(x, y)dx for a given y, it makes more sense to split the integral as∫ 1

0

f(x, y)dx =

∫ y

0

f(x, y)dx+

∫ 1

y

f(x, y)dx =

∫ y

0

1

y2
dx+

∫ 1

y

− 1

x2
dx (76)

since for
∫ y

0
· · · dx, what we really mean is 0 < x < y and thus we have the case f(x, y) =

1/y2.

• Exercise 10. Note that the domain of integration is really complicated so applying Fubini’s
to swap the order of integration might be challenging. Furthermore, there is no guarantee
that the resulting integral is easier to solve. In fact, the integral by itself is a straightforward
computation! One should get that the integral is given by 73

3 .
Here, one should note that there will be a step involving x3/2 evaluated at x = y2/3. This
expression yields (y2/3)3/2 = |y|, not y, in which this makes a difference when we integrate
y from −1 to 1.

• Exercise 11. For every fixed x ∈ (−1, 1), we see that y is bounded from above by a straight
line y = 1, and below by the parabola (cylinder if z is arbitrary) y = x2. Furthermore, for
every fixed (x, y), z is bounded from below by the plane z = 0, and from above by the plane
z = 1− y. The solution is given by∫ 1

0

∫ 1−z

0

∫ √
y

−√
y

f(x, y, z)dxdydz. (77)

See the attached diagram on the next page which serves as a visual aid for this exercise.

• Exercise 12. Note that x2+2y2+3z2 is a non-negative function. Thus, 1−x2−2y2−3z2 ≥ 0
if x2 + 2y2 + 3z2 ≤ 1. Thus, we set E to be the ellipsoid

E = {(x, y, z) ∈ R3 : x2 + 2y2 + 3z2 ≤ 1.} (78)

The exterior region of E contributes to negative volume (since the integral is negative there),
while if we consider any strict subset F ⊊ E, we could have expanded F to E to increase
the value of the triple integral as the integrand is non-negative in E. Thus, the integral is
maximized with our choice of ellipsoid in (78).
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4 Discussion 4

Summary for Lectures 8 - 10.

Polar Coordinates:

Proposition 61. Given a point (r, θ) in polar coordinates, we can compute the correspond-
ing rectangular coordinates (x, y) by {

x = r cos(θ)

y = r sin(θ).
(79)

Similarly, given a point (x, y) in rectangular coordinates, we can compute the corresponding
polar coordinates (r, θ) (implicitly) by{

r =
√
x2 + y2

tan(θ) = y
x .

(80)

Definition 62. A region R is radially simple if it is the region between graphs of two
continuous functions r1(θ) and r2(θ) over a fixed interval of θ-values.
Mathematically, there exists α ≤ β ∈ [0, 2π) and two continuous functions r1(θ) and r2(θ)
defined on [α, β] , such that

R = {(r, θ) : α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ)}. (81)

Theorem 63. If f(x, y) is a continuous function on a (compact) radially simple region R,
then ∫ ∫

R

f(x, y)dA =

∫ β

α

∫ r2(θ)

r1(θ)

f(r cos(θ), r sin(θ))rdrdθ. (82)

Spherical Coordinates:

Proposition 64. Given a point (ρ, θ, ϕ) in spherical coordinates, we can compute the cor-
responding Euclidean coordinates (x, y, z) by

x = ρ sin(ϕ) cos(θ)

y = ρ sin(ϕ) sin(θ)

z = ρ cos(ϕ).

(83)

Similarly, given a point (x, y, z) in Euclidean coordinates, we can compute the correspond-
ing spherical coordinates (ρ, θ, ϕ) (implicitly) by

ρ =
√
x2 + y2 + z2

tan(θ) = y
x

cos(ϕ) = z
ρ .

(84)

Definition 65. A solid region R ⊂ R3 is centrally simple if every ray from the origin
intersects R in a single line segment such that the first endpoint lies on a surface ρ =
ρ1(θ, ϕ) and the second endpoint lies on a surface ρ = ρ2(θ, ϕ). Mathematically, there exists
θ1 ≤ θ2 ∈ [0, 2π), ϕ1 ≤ ϕ2 ∈ (−π/2, π/2), and two continuous functions ρ1(θ, ϕ) and
ρ2(θ, ϕ) defined on the corresponding domain such that

R = {(ρ, θ, ϕ) : θ1 ≤ θ ≤ θ2, ϕ1 ≤ ϕ ≤ ϕ2, ρ1(θ, ϕ) ≤ ρ ≤ ρ2(θ, ϕ)}. (85)
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Theorem 66. If f(x, y, z) is a continuous function on a (compact) centrally simple region
R, then∫ ∫ ∫

R

f(x, y, z)dV =∫ θ2

θ1

∫ ϕ2

ϕ1

∫ ρ2(θ,ϕ)

ρ1(θ,ϕ)

f(ρ sin(ϕ) cos(θ), ρ sin(ϕ) sin(θ), ρ cos(ϕ)) ρ2 sin(ϕ)dρdϕdθ.

(86)

Cylindrical Coordinates:

Proposition 67. Given a point (r, θ, z) in cylindrical coordinates, we can compute the cor-
responding Euclidean coordinates (x, y, z) by

x = r cos(θ)

y = r sin(θ)

z = z.

(87)

Similarly, given a point (x, y, z) in Euclidean coordinates, we can compute the correspond-
ing cylindrical coordinates (r, θ) (implicitly) by

r =
√
x2 + y2

tan(θ) = y
x

z = z.

(88)

Theorem 68. If f(x, y, z) is a continuous function on a (compact) region C such that for
any given z = z0 in C, C|z=z0 is a radially simple region, then∫ ∫ ∫

C

f(x, y, z)dV =

∫ b

a

∫ β(z)

α(z)

∫ r2(θ,z)

r1(θ,z)

f(r cos(θ), r sin(θ), z)rdrdθdz. (89)

Here, the z-coordinates for C goes from a to b (with a ≤ b).

Diagramatic Aid:
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General change of variables formula:

Theorem 69. Let K ⊂ Rn be a compact set with voln(∂K) = 0. Let U ⊂ Rn be an open set
containing K and let

Φ : U → Rn (90)

be a map such that

1. Φ is a C1 mapping,

2. Φ is injective on int(K), and

3. det(DΦ) ̸= 0 on int(K).

Then, if f : Φ(K)→ R is a continuous function, then∫
Φ(K)

f(x)dV (x) =

∫
K

(f ◦ Φ)(y) · | det(DΦ)|dV (y). (91)

There are a lot of technical terms introduced in Theorem 69. We shall introduce them in a se-
quential manner, providing examples if possible at each step to aid the reader in internalizing the
definitions/concepts.

Definition 70. A subset U ⊂ Rn is open if for every x ∈ U , there exists r > 0 such that
Br(x) ⊂ U .

Definition 71. The interior of X ⊂ Rn is defined as

int(X) = X◦ := X \ ∂X = {x ∈ X : x /∈ ∂X}. (92)

Proposition 72. For any subset X ⊂ Rn, X◦ is open.

Example 73. Consider X = [1, 3) ⊂ R. Recall that ∂X = {1, 3}. With that, we can compute
X◦ = [1, 3) \ {1, 3} = (1, 3). Indeed, one can also see that X◦, an open interval, is open.
(Note that just because we call (1, 3) an open interval does not automatically implies that
(1, 3) is an open set - this requires proof!)
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Definition 74. A function f : A ⊂ Rm → Rn is differentiable at some x0 ∈ int(A) if there
exists a linear transformation T : Rm → Rn such that

lim
h→0

||f(x0 + h)− f(x0)− T (h)||
||h||

= 0. (93)

If f is indeed differentiable at x0, then we say that the derivative of f at x0 is given by

Df(x0) := T. (94)

Equality above can be understood as equality of linear transformations, in which for all h ∈ Rm,
we have Df(x0)(h) = T (h).2

Definition 75. Since the co-domain of the function f : A ⊂ Rm → Rn is in Rn, this implies
that we can write f(x) for any x ∈ Rm as

f(x) =

f1(x)...
fn(x)

 (95)

whereby fi : A ⊂ Rm → R for i ∈ {1, ..., n} and x = (x1, ..., xm). The Jacobian matrix of f
at x0 is thus given by

[Jf (x0)] =


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xm

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xm

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xm

 (x0). (96)

(The right hand side of (96) is to be understood as the matrix evaluated at x0.)

Theorem 76. Let f : A ⊂ Rm → Rn. If f is differentiable at x0 ∈ int(A), then all
(1 ≤ i ≤ m and 1 ≤ j ≤ n) the (first order) partial derivatives ∂

∂xi
fj(x0) exists and the

standard matrixa of Df(x0) is [Jf (x0)]. Mathematically, we have

Df(x0)(h) = [Jf (x0)]h. (97)

aStandard matrix here refers to the representation of the matrix in the standard basis in Rm. A definition is
given in Theorem 87. Such a concept will be covered in depth either in 33A or 115A.

Example 77. Consider the following function f : R2 → R3 given by

f(x, y) =

 xy
sin(x+ y)
x2 − y2.

 (98)

One can compute the corresponding Jacobian matrix at any arbitrary point (x, y) ∈ R2 as
follows:

[Jf (x, y)] =


∂
∂x (xy)

∂
∂y (xy)

∂
∂x (sin(x+ y)) ∂

∂y (sin(x+ y))
∂
∂x (x

2 − y2) ∂
∂y (x

2 − y2)

 =

 y x
cos(x+ y) cos(x+ y)

2x −2y

 . (99)

2If you do not know what a linear transformation is because you do not have credits for 33A or did not take 32AH, just
think of a linear transformation from Rm to Rn as a n×m matrix.
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Definition 78. A function f : A ⊂ Rm → Rn is a C1 mapping if it is differentiable on A
and all its partial derivatives are continuous on A.

(In the language of single variable calculus, for any f : R → R, we say that f is C1 if it is
continuously differentiable.)

Proposition 79. If a function f : A ⊂ Rm → Rn is differentiable on A if all its partial
derivatives are continuous on A.

The above proposition implies that it suffices to compute the partial derivatives (or preferably the
Jacobian matrix directly) and see if they are continuous to prove that f is indeed differentiable on
A, and thus we can define the derivative of f as in (94) and apply Theorem 76 directly (which we
can use to Jacobian matrix previously computed as the derivative directly).

Definition 80. A function f : Rm → Rn is injective (one-to-one) on a subset A ⊂ Rn if for
all u,v ∈ A, f(u) = f(v) =⇒ u = v.

(Equivalently, for all u,v ∈ A,u ̸= v =⇒ f(u) ̸= f(v). Intuitively, this means that “different
inputs must be mapped to different outputs”.)

Definition 81. A function f : X → Y is invertible if there exists a function g : Y → X
such that for all x ∈ X, g(f(x)) = x and for all y ∈ Y , we have f(g(y)) = y.

Proposition 82. Let X,Y ⊂ Rn and f : X → Y . If a function f is invertible, then f is
injective on X.

Example 83. Consider f : R→ R+ ∪ {0} given by f(x) = x2.

• f is injective on R ∪ {0}. We can check this by definition. For any x, y ∈ R ∪ {0},
f(x) = f(y) implies that x2 = y2. Since both x, y ≥ 0, we can take the positive root
on both sides to obtain x = y, as required to prove that f is indeed injective on this
domain.

• f is not injective on R. We can prove this by providing a counterexample, since

¬(∀x, y ∈ R, f(x) = f(y) =⇒ x = y)

= (∃x, y ∈ R, f(x) = f(y) and x ̸= y.)

Thus, a counterexample here would be x = 1, y = −1, and f(x) = 12 = 1 = (−1)2 =
f(y).

• Since f is not injective on R, then f is not invertible by the contrapositive of Proposi-
tion 82.

• Consider f1 : R+ ∪ {0} → R+ ∪ {0} given by f1(x) = f(x) for all x ∈ R+ ∪ {0}. We
claim that f1 is invertible. Consider the “inverse” function g : R+ ∪ {0} → R+ ∪ {0}
given by g(x) =

√
x. One can check that f(g(x)) = (

√
x)2 = x and g(f(x)) =

√
x2 = x

(since x ≥ 0). By Proposition 82, f1 is injective on R+ ∪ {0}, which is what we have
checked in the first bullet point.
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Next, we look at some applications of the general change of variables formula as in Theorem 69.

Theorem 84. (The other direction.) Let K ⊂ Rn be a compact set with voln(∂K) = 0. Let
U ⊂ Rn be an open set containing K and let

Φ : U → Rn (100)

be a map such that

1. Φ is a C1 mapping,

2. Φ is injective on int(K), and

3. det(DΦ) ̸= 0 on int(K).

Then, if f : Φ(K)→ R is a continuous function, then∫
K

(f ◦ Φ)(x)dV (x) =

∫
Φ(K)

f(y) · 1

|det(DΦ)|
dV (y). (101)

This can be understood by comparing say Φ(x) = y for this case as compared to x = Φ(y). To
deduce this from Theorem 69, since Φ is injective on int(K), Φ : int(K)→ Φ(int(K)) is invertible
(bijective) and thus we can invert Φ(x) = y to x = Φ−1(y) and substitute this in the corresponding
formula. Furthermore, we have also used the following fact:

Theorem 85. If G = F−1 and det(DF ) ̸= 0, then det(DG) = 1
det(DF ) .

In addition, we can also look at the case for linear maps/transformations below.

Definition 86. A function T : Rn → Rm is a linear map if

T

(
k∑

i=1

αivi

)
=

k∑
i=1

αiT (vi) (102)

for all k ∈ N, αi ∈ R, and all vectors vi ∈ Rn.

Theorem 87. A map T : Rn → Rm is linear if and only if there is a matrix A ∈ Mm×n(R)
such that

T (x) = Ax. (103)

We call A the standard matrix of T .

Notation: Mm×n(R) refers to the set of m× n matrices with real entries.

Definition 88. A matrix A ∈Mm×n(R) is invertible if there exists a matrix B ∈Mm×n(R)
such that AB = BA = In. Here, B is known as the inverse of A.

Corollary 89. A linear map T : Rn → Rn is invertible if and only if its standard matrix A is
invertible.

Theorem 90. A linear transformation T : Rn → Rn with standard matrix A is invertible if
and only if det(A) ̸= 0.
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Theorem 91. (Computing determinants using cofactor expansion.) Let A ∈Mn×n(R), and
let Aij ∈M(n−1)×(n−1)(R) denote the matrix obtained by deleting row i and column j from
A. Then, we have

det(A) = (−1)i+1ai,1 det(Ai1) + ...+ (−1)i+nai,n det(Ain). (104)

Here, we note that the equation above is true for all valid choices of i, and thus is indepen-
dent of the choice of i (that is, the row in which you plan to expand the theorem about to
compute the determinant).

For instance, if A ∈M2×2(R), we have

det

(
a b
c d

)
= (−1)1+1a11 det(A11) + (−1)1+2a12 det(A12)

= adet(d)− bdet(c) = ad− bc.
(105)

Theorem 92. The volume of a parallelpiped spanned by v1, ...,vn in Rn is given by

voln(D) =

∣∣∣∣∣∣∣det
v1

...
vn


∣∣∣∣∣∣∣ . (106)

Note that

v1

...
vn

 is an n× n matrix with the first row given by the entire vector v1, etc.

Last but not least, we arrive at what we want to conclude for linear transformations:

Theorem 93. Let T : Rn → Rn be an invertible linear transformation, and let f : Rn → R
be an integrable function. Then f ◦ T : Rn → R is integrable and∫

Rn

f(x)dV (x) =

∫
Rn

(f ◦ T )(y)|detT |dV (y). (107)

One can also show that |detT | is a constant that does not depends on y. This will be the content
for Exercise 17 below. Furthermore, det(T ) here is understood as the determinant of the standard
matrix of T .
With all the tools present, we shall look at some of the computational examples.
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Example 94. (Area of a lemniscate). Consider the curve given by the equation r2 = cos(2θ).
Compute the area of the right lobe of the curve.

Let A denote the region corresponding to the right loop of the lemniscate in rectangular
coordinates (x, y). By switching to the polar coordinates, we can obtain a corresponding
radially simple region B given by

B = {(r, θ) : −π
4
≤ θ ≤ π

4
and 0 < r <

√
cos(2θ).} (108)

Thus, the corresponding area is given by∫ ∫
A

1dA =

∫ π/4

−π/4

∫ √cos(2θ)

0

1 · rdrdθ

=

∫ π/4

−π/4

cos(2θ)

2
dθ =

1

2
.

(109)

(We can apply the change of variables formula as in Theorem 63 since 1 here is continuous
on A and the radially simple region is compact.)
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Example 95. (A practice question on spherical coordinates.) Let the region R ⊂ R3 be
given in Euclidean coordinates by

R = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1, z ≥ 0}. (110)

Compute
∫ ∫ ∫

A
zdxdydz.

From the “spherical symmetry” hinted by the region R, we will thus consider the use of
spherical coordinates. The corresponding region in spherical coordinates is given by

S = {(r, θ, ϕ) ∈ (0,∞)× [0, 2π)× (−π/2, π/2) : r ≤ 1 and ϕ ≥ 0}. (111)

Here, we note that ϕ ≥ 0 corresponds to the fact that the z-coordinates in R are non-
negative. By the change of variables formula as in Theorem 66, we have∫ ∫ ∫

A

zdxdydz =

∫ 1

0

∫ π/2

0

∫ 2π

0

(r sin(ϕ)) · r2 cos(ϕ)dθdϕdr

=

∫ 1

0

∫ π/2

0

∫ 2π

0

r3 sin(ϕ) cos(ϕ)dθdϕdr

=

(∫ 1

0

r3dr

)(∫ 2π

0

dθ

)(∫ π/2

0

sin(ϕ) cos(ϕ)dϕ

)

=

(∫ 1

0

r3dr

)(∫ 2π

0

dθ

)(∫ π/2

0

sin(2ϕ)

2
dϕ

)

=
1

4
· (2π) · 1

2
=
π

4
.

(112)



Winter 22 MATH32BH Discussion Supplements 38

Example 96. (Change of variables I.) Find the area of the region R ⊂ R2 given by

R = {1 ≤ xy ≤ 2 and x2 ≤ y ≤ 2x2}. (113)

Note that x ̸= 0 else 1 ≤ xy ≤ 2 does not hold. This implies that we can divide by x2 in the
second inequality to obtain

R = {1 ≤ xy ≤ 2 and 1 ≤ y

x2
≤ 2}. (114)

An instructive “substitution” would be to set u = xy and v = y
x2 . To be mathematically

rigorous, we shall attempt to apply Theorem 69. This implies that we need to find the
corresponding mapping Φ such that∫

Φ(K)

f(x)dV (x) =

∫
K

(f ◦ Φ)(y) · | det(DΦ)|dV (y)∫
R

1R(x)dV (x) =

∫
Φ−1(R)

1R(Φ(y)) · | det(DΦ)|dV (y)

(115)

Here, it is understood that x = Φ(y). Thus, if x = (x, y) and y = (u, v), this implies that we
want to find Φ such that (

x
y

)
= Φ

(
u
v

)
(116)

which in otherwords, using the “substitution”, we have to find explicit forms of x and y in
terms of u and v. Solving u = xy and v = y/x3, we obtain{

x = (u/v)
1
3

y = (u2v)
1
3

(117)

and thus

Φ

(
u
v

)
=

(
(u/v)

1
3

(u2v)
1
3

)
. (118)

(Note that the x and y’s are indeed solvable since v = y/x2 is defined as x ̸= 0 as explained
above.) Next, we shall proceed to verify the hypotheses of Theorem 69.

Φ is injective on int(Φ−1(R)). We show that Φ is injective on int(Φ−1(R)) = {(u, v) : 1 <
u < 2 and 1 < v < 2}. Note that since Φ is obtained by solving x and y in terms of u and v,
we effectively have that if we define(

u
v

)
= Ψ

(
x
y

)
=

(
xy
y/x2

)
, (119)
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with ΨΦ

(
u
v

)
=

(
u
v

)
and ΦΨ

(
x
y

)
=

(
x
y

)
. (Basically, by obtaining Φ, we inverted Ψ in

the corresponding domain.) Since Φ : int(Φ−1(R)) → Φ(int(Φ−1(R))) is invertible, then it
is injective on int(Φ−1(R)) (see Proposition 82).

Φ is a C1 mapping and det(DΦ) ̸= 0 on int(Φ−1(R)). In view of Proposition 79, we com-
pute

[JΦ(y)] =

(
∂(u/v)1/3

∂u
∂(u/v)1/3

∂v
∂(u2v)1/3

∂u
∂(u2v)1/3

∂v

)
=

(
1

3u2/3v1/3 − u1/3

3v4/3

2v1/3

3u1/3
u2/3

3v2/3

)
(120)

which we can see that the partial derivatives are continuous since v, u ̸= 0 (ie u = 0,
then xy = 0 which is outside of the range; alternatively, see the corresponding domain
int(Φ−1(R))). Furthermore, |det(DΦ(y)| = |det(JΦ(y))| = 1

3v ̸= 0. Thus, Φ is a C1

mapping and det(DΦ) ̸= 0.

Furthermore, the function 1 is clearly continuous on R. Thus, by the general change of
variables formula, we have∫

R

dA(x) =

∫
Φ−1(R)

Φ(y) · | det(DΦ(y))|dA(y)

=

∫ 2

1

∫ 2

1

1

3v
dudv

= (2− 1) · 1
3
· ln(2) = ln(2)

3
.

(121)
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Example 97. (Change of variables II.) Find the area of the region R ⊂ R2 given by

R = {1 ≤ xy ≤ 2 and x2 ≤ y ≤ 2x2}. (122)

(Same question as Example 96.)
Recall that an instructive “substitution” would be to set u = xy and v = y

x2 . However,
instead of solving x and y for u and v, we can instead apply the change of variables formula
in the reverse direction, as indicated in Theorem 84. In the language of Theorem 84, we
have ∫

R

(f ◦ Φ)(x)dV (x) =

∫
Φ−1(R)

f(y) · 1

|det(DΦ(y))|
dV (y). (123)

This time round, if x = (x, y) and y = Φ(x) with y = (u, v), it is clear that

Φ

(
x
y

)
=

(
xy
y
x2

)
. (124)

Although one would have to show the injectivity of Φ by solving for x and y in terms of
u and v as in the previous example (to construct the inverse and thus is injective), the
advantage of this method is that the computation of DΦ is actually simpler and shorter. For
instance, we have

[JΦ(x)] =

(
∂(xy)
∂x

∂(xy)
∂y

∂(y/x2)
∂x

∂(y/x2)
∂y

)
=

(
y x

−2y/x3 1/x2

)
(125)

and thus
|det(DΦ(x))| = 3y/x2 = 3v (126)

(Here, we write the output as a function of y since technically speaking, in the formula
above, we would require |det(DΦ(y)|, that is, the Jacobian expressed in the “new”
coordinate system that we are working with.) Of course, one can conclude from above that
Φ is differentiable and det(DΦ) ̸= 0 (since v ̸= 0).

Using the formula as in (123) and setting f = 1R which is continuous on R, we have∫
R

(1R ◦ Φ)(x)dV (x) =

∫
Φ−1(R)

1R(y) ·
1

|det(DΦ)|
dV (y)

=

∫ 2

1

∫ 2

1

1 · 1

3v
dvdu =

ln(2)

3
.

(127)

Note that the final area as computed using both methods coincide, as expected!
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Exercises:

Exercise 13. Let f(x, y) =

{
x2 + y2 if x2 + y2 ≤ R2

0 if x2 + y2 > R2.
Compute

∫
R2 f(x, y)dA.

Exercise 14. Compute the following integral:∫ 1

−1

∫ √
1−x2

0

∫ √2−x2−y2

√
x2+y2

√
x2 + y2 + z2dzdydx. (128)

Exercise 15. (Basic Topology on Rn). Recall the definition of open sets in Rn as in 70.
Furthermore, recall the definition of closed sets in Rn, namely, a subset X ⊂ Rn is closed
if X = X or for any sequence xn ∈ A → x ∈ Rn, then x ∈ A. In this exercise, we shall
prove some of the basic properties of open and closed sets, and apply them to interiors and
boundaries of sets.
You may assume without proof that the following properties hold:

• Given any open set A ⊂ Rn, Rn \A is closed.

• Conversely, given any closed set A ⊂ Rn, Rn \A is open.

• The closure A of any subset A of Rn is closed.

Prove the following:

(i) Given any two open subsets A and B of Rn, prove that A ∪B and A ∩B are open.

(ii) Given any two closed subsets A and B of Rn, prove that A ∪B and A ∩B are closed.

(iii) Using some of the properties above, prove that for any A ⊂ Rn, ∂A is closed.

(iv) Using some of the properties above, prove that for any A ⊂ Rn, A◦ is open.

Exercise 16. By using the general change of variables formula, compute the volume of an
ellipsoid, a solid bounded by the surface (with a, b, c > 0)

x2

a2
+
y2

b2
+
z2

c2
= 1. (129)

Exercise 17. Let T : Rn → Rn be a linear transformation. Prove the following:

(i) |det(DT )| = |det(T )|,a and

(ii) |det(T )| is a constant depending only on the given T .

adet here is understood as the determinant of the standard matrix for T .
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Partial Solutions/Hints:

• Exercise 13. Note that the support of the function is compact and that the function is contin-
uous. The support here is basically a ball of radius R centered at the origin. With that, we
can apply the change of variable formula for polar coordinates to obtain∫

R2

f(x, y)dA =

∫ 2π

0

∫ R

0

f(r cos θ, r sin θ)rdrdθ = ... =
πR4

2
. (130)

• Exercise 14. Use spherical coordinates! Upon figuring out the right domain, you should have

... =

∫ π

0

∫ π/4

0

∫ √
2

0

ρ3 sin(ϕ)dρdϕdθ = π

(
1− 1√

2

)
. (131)

Hint: ϕ = π
4 is obtained by figuring out the corresponding angle ϕ in which the upper

hemisphere x2 + y2 + z2 = 2 intersects the paraboloid z =
√
x2 + y2.

• Exercise 15. (i) If x ∈ A ∪ B, then x ∈ A or x ∈ B. If x ∈ A, then since A is open, there
exists r > 0 such that BrA(x) ⊂ A ⊂ A ∪B. A similar case holds for x ∈ B.
If x ∈ A∩B, then x ∈ A and x ∈ B. By openness of A and B, there exists rA > 0 and rB > 0
such that BrA(x) ⊂ A and BrB ⊂ B. Thus, if we pick r = min{rA, rB}, then we must have
Br(x) ⊂ A ∩B.
(ii) If A and B are closed, then Ac and Bc are open. Notice that A ∪ B = (Ac ∩ Bc)c and
A ∩B = (Ac ∪Bc)c. Then, use (i) to arrive at the conclusion.
(iii) ∂A = A ∩ Rn \A.
(iv) int(A) = Rn \A.

• Exercise 16. A “reverse” direction will greatly simply the computation. The corresponding
(u, v, w) = Φ(x, y, z) = (x/a, y/b, z/c) and one can therefore show that |det(DΦ)| = 1

abc . If
we denote R to be the required region, then∫ ∫ ∫

R

1dV =

∫ ∫ ∫
B1(0)

1

1/abc
dV =

∫ ∫ ∫
B1(0)

abcdV =
4

3
πabc. (132)

In the last equality, we have used the fact that the choice of substitution scales the ellipsoid
down to a sphere of radius 1, and we know that the volume of such a sphere is 4π

3 .

• Exercise 17. A linear transformation T implies that there is a standard matrix A such that

T (x) = Ax. (133)

One can show by considering component wise, that the corresponding Jacobian matrix is
given by

[JT (x)] = A (134)

and thus
|det(DT )| = |det(JT )| = |det(A)| = |det(T )| (135)

where the last equality is basically a formality, since the determinant of a linear transforma-
tion is defined to be the determinant of the corresponding standard matrix.
Consequently, since det(T ) = A which does not depend on the point of interest x, we have
the required conclusion for (ii).
An example of the “component wise” argument: (JT (x))11 = ∂

∂x1

∑n
i=1A1ixi = A11.
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5 Discussion 5

Summary for Lectures 11 - 12.

Definition 98. A vector-valued function is a function f : R→ Rn, defined by

r(t) = (x1(t), · · · , xn(t))T .a (136)

aThe superscript T here refers to transpose, so we are actaully looking at a column vector here as compared to
a row vector.

Definition 99. The graph of a function f : Rm → Rn is the set of points (x,y) ∈ Rm×Rn ∼=
Rm+n such that f(x) = y.

Thus, we can say the following:

Definition 100. A curve in Rn is the graph of a vector-valued function r : R→ Rn−1.

Intuitively, when we try to “graph” something, say from Rm to Rn, we set aside “m” degree of
freedoms/variables to “parameterize” that thing, such that if it lies in Rn, each component can
be parameterized by the same set of m variables. For example, since a curve is the graph of
r : R → Rn−1, we have 1 degree of freedom to work with, parametrizing the remaining n − 1
components with this common variable, and thus we can describe a curve in Rn by

(t, r(t))T = (t, x2(t), x3(t), ..., xn(t))
T . (137)

Note that this lies in Rn, the number of variables used to parameterize the curve and the number
of components to parameterize by, will have to sum up to n. This motivates the following:

Definition 101. A surface in Rn (for n > 2) is the graph of a function f : R2 → Rn−2.

Intuitively, this means that we can “parameterize” each of the n − 2 components with just 2 vari-
ables; ie

(x, y, f(x, y))T = (x, y, x3(x, y), ..., xn(x, y))
T . (138)

Generalizing to general number of variables/degree of freedom, we have the following:

Definition 102. A subsetM ⊂ Rn is a differentiable k−dimensional manifold embedded
in Rn if for all x ∈ M , there exists an open neighborhood U such that M ∩ U is the graph
of a C1 mapping f : Rk → Rn−k.a

aRigorously speaking, “graph of a C1−mapping” should only hold for all points on M ∩ U .

Examples:

• A differentiable curve in R3 is a 1−dimensional manifold embedded in R3. This means that
locally3, it is the graph of a C1 mapping f : R1 → R3−1 = R2.

• A differentiable surface in R3 is a 2−dimensional manifold embedded in R3. This means
that locally, it is the graph of a C1 mapping f : R2 → R3−2 = R.

• Disjoint unions of manifolds is a manifold.

• The figure-eight nor the union of two intersecting lines are differentiable curves in R2.

3Mathematically speaking, locally here means that for every given point x ∈ M , we just have to find an open neighbor-
hood U small enough such that in this neighborhood, the corresponding condition happens.
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Definition 103. Let X ⊂ Rn → Rm be a function. The vanishing locus of F (or just locus)
is the set of points V (F ) where F vanishes. Mathematically,

V (F ) = {x ∈ X : F (x) = 0}. (139)

Definition 104. A map f : X → Y is surjective if for every y ∈ Y there exists an x ∈ X
such that f(x) = y.

Proposition 105. Let F : Rn → R be a C1−map. Fix a z ∈ Rn. Then, the following
conditions on the derivative of F at z, [DF (z)], are equivalent:

• [DF (z)] is surjective.

• At least one of the partial derivatives ∂F
∂xi

is non-zero.

• [DF (z)] ̸= [0, ..., 0].

Theorem 106. (Locally showing a vanishing locus is a differentiable manifold). Let M ⊂
Rn be a subset. Let U ⊂ Rn be open, and let F : U → Rn−k be a C1−mapping such that

M ∩ U = {z ∈ U : F (z) = 0}. (140)

If [DF (z)] is a surjective map for every z ∈ M ∩ U , then M ∩ U is a differentiable
k−dimensional manifold embedded in Rn.

Note: Surjectivity here refers to the linear map [DF (z)] created with a given z. Explicitly, suppose
that we have some z ∈ M ∩ U , consider [DF (z)] : Rn → Rn−k. Then, [DF (z)] is surjective if for
all y ∈ Rn−k, there exists x ∈ Rn such that [DF (z)](x) = y. (Here, [DF (z)](x) is understood as a
matrix multiplication.)
Explicit Example: If for a given z ∈ R2, we have [DF (z)] = [2, 0] : R2 → R1. Then, let y ∈ R1 be

given. Pick x =

[
y/2
0

]
. Then, [DF (z)]x =

[
2 0

] [y/2
0

]
= y. Thus, [DF (z)] = [2, 0] is surjective.

Theorem 107. (Showing a vanishing locus is a differentiable manifold). Let M ⊂ Rn be
a subset. If for every z ∈ M , there exists open set U containing z, and a C1−mapping
F : U → Rn−k such that

M ∩ U = {z ∈ U : F (z) = 0}, (141)

then M is a differentiable k−manifold embedded in Rn.

Theorem 108. (A differentiable manifold is locally a vanishing locus.) Conversely, let
M ⊂ Rn be a differentiable k−dimensional manifold. Then, every point z ∈ M has a
neighborhood U ⊂ Rn such that there exists a C1−mapping F : U → Rn−k with [DF (z)]
surjective and

M ∩ U = {z ∈ U : F (z) = 0}. (142)

Some remarks include:

• To show that a locus of F = V (F ) is a manifold, one can compute [DF (z)] for any given
z ∈M ∩ U , and prove that [DF (z)] is surjective. The conclusion follows from Theorem 106.

• With regards to the previous point, the surjectivity of [DF (z)] is often easily shown using
Proposition 105 or by definition of surjectivity.

• If [DF (z)] is not surjective, one would have to prove this “directly”, via Theorem 107. Thus,
it is possible that [DF (z)] is not surjective yet V (F ) is a differentiable manifold!
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We will look at a simple explicit example below:

Example 109. Consider F

xy
z

 = sin(x+ yz), with F : R3 → R.

• Consider the set

M =




x
y
z

F (x, y, z)

 ∈ R4 :

xy
z

 ∈ R3

 . (143)

We can check that M is a 3−dimensional manifold embedded in R4 as follows. For
every given (x, y, z, w) ∈ R4, pick U = R4 (which is open, see 20), then M ∩ U = M
is the graph of the mapping F : R3 → R (this follows by the definition of a graph).
For it to be a 3−dimensional manifold embedded in R4, it suffices to check that F is
C1. Thus, one can compute:DF

xy
z

 =

[
∂F

∂x
,
∂F

∂y
,
∂F

∂z

]
= [cos(x+ yz), z cos(x+ yz), y cos(x+ yz)]

= cos(x+ yz)[1, z, y]

(144)

which we can see that each of the components here are continuous. Thus, all the par-
tial derivatives of F are continuous and therefore, F is a C1 mapping (see Discussion
Supplement 4 for a recap on how to check that a mapping is C1).

• Next, we consider the vanishing locus of F , V (F ), given by

V (F ) =


xy
z

 ∈ R3 : F

xy
z

 = 0

 . (145)

We claim that V (F ) is a 2−dimensional surface embedded in R3. Appealing to The-

orem 106, we shall pick U ⊃ V (F ) (with U open) and show that

DF
ab
c

 is

surjective for every

ab
c

 ∈M . Indeed, from (144),

DF
ab
c

 = cos(a+ bc)[1, b, c]. (146)

Since

ab
c

 ∈ M , by definition, we must have sin(a+ bc) = 0 and thus cos(a+ bc) ̸=

0. This implies that the first component of

DF
ab
c

 is never zero, and thus by

proposition 105,

DF
ab
c

 is surjective for arbitrary

ab
c

 ∈ M . This implies that

V (F ) is a 2−dimensional surface embedded in R3. a

aInstead of using our intuition, we can also deduce the fact that it is a 2−dimensional surface from the domain
and codomain of F : R1 = R3−2 and thus k = 2 by looking at the specifics in Theorem 106.
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Last but not least, we end off with some definitions for parameterization below:

Definition 110. A strict parameterization of a differentiable k-manifold M ⊂ Rn is a
C1−mapping γ : U ⊂ Rk →M satisfying the following conditions:

1. U is an open set,

2. γ is injective a, and surjects onto M , and

3. [Dγ(u)] is injective for all u ∈ U .

aso that the manifold does not intersect with itself

Example: A strong parameterization of a curve in Rn is a C1−mapping γ : U ⊂ R → Rn if it
satisfies the following conditions:

1. U is an open interval,

2. γ is injective.

3. [Dγ(u)] = γ′(u) is injective for all u ∈ U .4

Example: If the manifold M is the graph of a single function f(x) = y, then M is parameterized
by x→

(
x, f(x)

)
We shall end off with the following useful theorem for verifying conditions of a strict parameteri-
zation below:

Theorem 111. A linear transformation T : Rn → Rm with standard matrix A has the
following equivalent properties

1. T is injective.

2. The only solution to Ax = 0 is x = 0.

3. If the equation Ax = b has a solution, then it is unique.

4. The columns of A are linearly independent.

Theorem 112. A linear transformation T : Rn → Rm with standard matrix A has the
following equivalent properties

1. T is surjective.

2. The image of A is Rm.

3. The columns of A spans Rn.

4. The rows of A are linearly independent.

5. For every b ∈ Rm, there exists a x ∈ Rn such that Ax = b.

4γ here is bolded.
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Let us look at an explicit example of a “strong parameterization”.

Example 113. Let C be the upper half unit circle in R2 (excluding points (±1, 0)). Thus,
the parameterization γ : (0, π)→ C given by

γ(θ) =

(
cos(θ)
sin(θ)

)
. (147)

Here, U = (0, π) is an open subset of R, and γ is bijective (both injective and surjective; one
can check this by definition of injective and surjective) on this open interval. Furthermore,

γ′(θ) =

(
− sin(θ)
cos(θ)

)
̸=
(
0
0

)
(148)

for any given θ ∈ (0, π) (since sin and cos can’t be simultaneously 0 at the same point). Thus,

[Dγ(θ)] = γ′(θ) is injective for all θ ∈ (0, π) (since the only solution to
(
− sin(θ)
cos(θ)

)
x =

(
0
0

)
is necessarily zero by the above observation, for any given θ ∈ (0, π)). This implies that γ is
a “strong parameterization” of the upper half unit circle in R2.
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Exercises:

Exercise 18. Prove that the set{(
x
y

)
∈ R2 : x+ x2 + y2 = 2

}
(149)

is a differentiable 1−dimensional manifold embedded in R2 (a.k.a a differentiable curve in
R2).

Exercise 19. Show that the mapping:

g :

(
u
v

)
→

sin(uv) + u
u+ v
uv

 (150)

is a parameterization of a differentiable (smooth) surface in R3 by showing the following:

(i) The image of g is contained in the locus S of the equation:

z = (x− sin(z))(sin(z)− x+ y). (151)

(ii) S is a smooth surface.

(iii) g maps R2 surjectively to S.

(iv) g is injective, and
[
Dg

(
u
v

)]
is injective for every

(
u
v

)
∈ R2.

Exercise 20. Show that ∅ ⊂ Rn and Rn are both open and closed in Rn.
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Partial Solutions/Hints:

• Exercise 18. Appeal to Theorem 106 and Proposition 105. To show that the set of points
such that [DF (x, y)] ̸= (0, 0), show that this is attained at (−1/2, 0) and that (−1/2, 0) does
not lie on this curve.

• Exericse 19.

(i) is done by direct substitution.

(ii) uses a similar strategy as Exercise 18.

(iii). To check that to solve for
(
u
v

)
such that g

(
u
v

)
=

sin(uv) + u
u+ v
uv

 =

xy
z

, just pick(
u
v

)
=

(
x− sin(z)

y − x+ sin(z)

)
. Note that when you are checking that it works, you are

always free to use the fact that

xy
z

 ∈ S and thus (151) holds!

(iv) can be checked by definition for g and appealing to Theorem 111 for [Dg].

• Exercise 20: One can use the definition of open (in Discussion Supplement 4) and closed
(in Discussion Supplement 1) to prove this directly. For the empty set, one can verify the
statements for open and closed sets vacuously. Alternatively, one can use the results in the
second exercise in Discussion Supplement 4.
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6 Discussion 6

Summary for Lectures 13 - 15.

We shall recap the definition of strict parameterization as follows:

Definition 114. A strict parameterization of a differentiable k-manifold M ⊂ Rn is a
C1−mapping γ : U ⊂ Rk →M satisfying the following conditions:

1. U is an open set,

2. γ is injective a, and surjects onto M , and

3. [Dγ(u)] is injective for all u ∈ U .

aso that the manifold does not intersect with itself

Example: A strong parameterization of a curve in Rn is a C1−mapping γ : U ⊂ R → Rn if it
satisfies the following conditions:

1. U is an open interval,

2. γ is injective.

3. [Dγ(u)] = γ′(u) is injective for all u ∈ U .5

Example: If the manifold M is the graph of a single function f(x) = y, then M is parameterized
by x→

(
x, f(x)

)
.

We shall end off with the following useful theorem for verifying conditions of a strict parameteri-
zation below:

Theorem 115. A linear transformation T : Rn → Rm with standard matrix A has the
following equivalent properties

1. T is injective.

2. The only solution to Ax = 0 is x = 0.

3. If the equation Ax = b has a solution, then it is unique.

4. The columns of A are linearly independent.

Theorem 116. A linear transformation T : Rn → Rm with standard matrix A has the
following equivalent properties

1. T is surjective.

2. The image of A is Rm.

3. The columns of A spans Rn.

4. The rows of A are linearly independent.

5. For every b ∈ Rm, there exists a x ∈ Rn such that Ax = b.

5γ here is bolded.
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Let us look at an explicit example of a “strict parameterization”.

Example 117. Let C be the upper half unit circle in R2 (excluding points (±1, 0)). Thus,
the parameterization γ : (0, π)→ C given by

γ(θ) =

(
cos(θ)
sin(θ)

)
. (152)

Here, U = (0, π) is an open subset of R, and γ is bijective (both injective and surjective; one
can check this by definition of injective and surjective) on this open interval. Furthermore,

γ′(θ) =

(
− sin(θ)
cos(θ)

)
̸=
(
0
0

)
(153)

for any given θ ∈ (0, π) (since sin and cos can’t be simultaneously 0 at the same point). Thus,

[Dγ(θ)] = γ′(θ) is injective for all θ ∈ (0, π) (since the only solution to
(
− sin(θ)
cos(θ)

)
x =

(
0
0

)
is necessarily zero by the above observation, for any given θ ∈ (0, π)). This implies that γ is
a “strict parameterization” of the upper half unit circle in R2.

Now, let us consider a “softer” version of the strict parameterization above. To do so, we shall first
introduce the following definitions:

Definition 118. Let X ⊂ Rn be a bounded subset. We say that X has k−dimensional
volume 0 (ie volk(X) = 0) if

lim
N→∞

∑
C∈DN :C∩X ̸=∅

(
1

2N

)k

= 0. (154)

Definition 119. An arbitrary subset X ⊂ Rn has k−dimensional volume 0 if for all R, the
bounded set X ∩BR(0) has k−dimensional volume 0.

The following theorem can thus be verified:

Theorem 120. If 0 ≤ m < k ≤ n and M ⊂ Rn is a manifold of dimension m, then any
closed subset X ⊂M has k−dimensional volume 0.

Intuitively, this means that the “higher dimensional volume” of a manifold (with that dimension)
is 0. For instance, volk(M) = 0 if M is m−dimensional (with m < k).

The parameterization definition in full glory is as follows:

Definition 121. (General Parameterization.) Let M ⊂ Rn be a differentiable k−manifold.
Let A ⊂ Rk be a subset such that volk(∂A) = 0. Let X ⊂ A be a subset such that A \X is
open. Then, a C1−mapping γ : A→ Rn parametrizes M if

(1) M ⊂ γ(A),

(2) γ(A \X) ⊂M ,

(3) γ : A \X →M is injective,

(4) [Dγ(u))] is injective for all u ∈ A \X, and

(5) X has k−dimensional volume 0, as does γ(X) ∩ C for any compact subset C ⊂M .

If we pick X = ∂A, we then have the following particular case:
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Definition 122. (Parameterization with possible overlap at the boundary.) Let M ⊂ Rn be
a differentiable k−manifold. Let D ⊂ Rk be a connected subset such that volk(∂D) = 0.
(Here, we are choosing A = D and X = ∂D. Recall that A \ ∂A = A◦ (or int(A)) is
guaranteed to be open.) Then, a C1−mapping parametrizes M if

(1) M ⊂ γ(D),

(2) γ(D◦) ⊂M ,

(3) γ : D◦ →M is injective,

(4) [Dγ(u))] is injective for all u ∈ D◦, and

(5) γ(∂D) ∩ C for any compact subset C ⊂M has k−dimensional volume 0.
(It is guaranteed that volk(X) = volk(∂D) = 0 by the hypothesis of the definition.)

To talk about connected sets, we shall introduce the following definitions (these are optional -
probably just for your enrichment/for the mathematical enthusiasts)

Definition 123. Let X ⊂ Rn. We say that Y is open relative to X if there exists an open
set Z ⊂ Rn such that Y = Z ∩X.

Definition 124. We say that a subset X ⊂ Rn is disconnected if there exists disjoint sets
U, V ⊂ Rn, open relative to X, such that X = U ∪ Y .

Definition 125. We say that a subset X ⊂ Rn is connected if it is not disconnected.

Example 126.

• Y = [1, 2) ⊂ R is open relative to X = [1, 3]. This is because there exists an open set
in R, given by Z = (0, 2), such that Y = [1, 2) = (0, 2) ∩ [1, 3].

• Any subset X ⊂ Rn is always open relative to itself. This is because we can pick an
open ball Z ⊃ X so that X = Z ∩X.

• X = [1, 2]∪ [3, 4] is disconnected. This is because U = [1, 2] and V = [3, 4] are disjoint
and open relative to X = [1, 2] ∪ [3, 4].
(Since we can pick U ′ = (0.9, 2.1) and V ′ = (2.9, 4.1), both open, such that U ′∩X = U
and V ′ ∩X = V .)

We then end off with the following theorems:

Theorem 127. All manifolds can be parametrized.

Theorem 128. (Inverse image of a manifold.) Let M ⊂ Rm be a differentiable
k−dimensional manifold embedded in Rn. Let U ⊂ Rn be open and f : U → Rm be a
C1−mapping. Then, let f−1(M) be the inverse image (pre-image) of M , mainly

f−1(M) = {x ∈ Rn : f(x) ∈M}. (155)

If [DF (z)] is surjective for every z ∈ f−1(M), then f−1(M) is a differentiable (n + k −
m)−dimensional manifold embedded in Rn.

Note that the above generalizes the idea that a vanishing locus is a manifold, since given an f as
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described above, the vanishing locus is mathematically described as

V (f) = f−1({0}) (156)

in which {0} is a 0−dimensional manifold (thus k = 0), and thus V (f) = f−1(0) is a (n −
m)−dimensional manifold.

With that, we shall take a look at an example below:

Example 129. (Spherical Coordinates.) Show that the map

S :

rθ
ϕ

→
r sinϕ cos θr sinϕ sin θ

r cosϕ

 (157)

with 0 ≤ r < ∞, 0 ≤ θ ≤ 2π, and 0 ≤ ϕ ≤ π, parametrizes space by the distance from the
origin r, polar angle θ, and the angle from the north pole ϕ.

We shall check the conditions as in Definition 122.

• Here, M = R3 ⊂ R3. (You can view this as a “change of coordinates” rather than a
“distinct parametrization”.)

• D = [0,∞)× [0, 2π]× [0, π], with (draw this in R3 to visualize this as a cuboid in R3,
with the last face at r =∞ and thus not included)

∂D = ([0.∞)× {0} × [0, π])

∪ ([0.∞)× {2π} × [0, π])

∪ ([0.∞)× [0, 2π]× {0})
∪ ([0.∞)× [0, 2π]× {π})
∪ ({0} × [0, 2π]× [0, π])

(158)

with each piece having vol3 = 0. Thus, vol3(∂D) = 0.

• (1) M = R3 ⊂ S(D). Indeed, for every (x, y, z) ∈M , we can find a value of (r, θ, ϕ) ∈

D such that S

rθ
ϕ

 =

xy
z

. This is because since (x, y, z) can be written in spherical

coordinates as x = r sinϕ cos θ, y = r sinϕ sin θ, z = r cos θ, we shall pick the value of
(r, θ, ϕ) obtained from spherical coordinates and place it in the argument for S.

• (2): S(D◦) ⊂ M = R3. Take an element (x, y, z) ∈ S(D◦). This implies that there

exists (r, θ, ϕ) ∈ D◦ such that S

rθ
ϕ

 =

xy
z

. Equivalently, by the definition of our

map S, we get r sinϕ cos θr sinϕ sin θ
r cosϕ

 =

xy
z

 . (159)

It remains to show that such an

xy
z

 ∈ M . This follows from the fact that any point

in R3 can be expressed in spherical coordinates, and thus such a tuple of spherical
coordinates must correspond to some M = R3. (In fact, since we are only allowing
the argument of S to vary of D◦ rather than the entire D, we might be missing certain
pieces of R3 but that is okay as long as it is in R3.) (See Discussion Supplement 4 on
spherical coordinates.)
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• (3): S : D◦ → R3 is injective. This can be done by assuming that we have
(r1, θ1, ϕ1), (r2, θ2, ϕ2) ∈ D◦, and consider S(r1, θ1, ϕ1) = S(r2, θ2, ϕ2) equivalently
given by 

r1 sinϕ1 cos θ1 = r2 sinϕ2 cos θ2

r1 sinϕ1 sin θ1 = r2 sinϕ2 sin θ2

r1 cosϕ1 = r2 cosϕ2.

(160)

Take the squares of each equation and using the fact that sin2(x) + cos2(x) = 1 for
any x ∈ R, we have

r21 = r22. (161)

Since r1, r2 ≥ 0, we can take the positive root to obtain r1 = r2. This implies that the
equation simplifies to 

sinϕ1 cos θ1 = sinϕ2 cos θ2

sinϕ1 sin θ1 = sinϕ2 sin θ2

cosϕ1 = cosϕ2.

(162)

From the third equation and the corresponding domain ϕ ∈ (0, ϕ) (recall that we are
looking at D◦ so the boundary points are excluded!), equality of cosines must imply
the equality of its argument (since cos is injective on (0, ϕ)). Thus, this implies the
equality of sin(ϕ1) = sin(ϕ2), which means that we can drop the sinϕ terms in the
second equation. Now, since sin θ1 = sin θ2 and cos θ1 = cos θ2 for θ ∈ (0, 2π), we
must obtain that θ1 = θ2 necessarily. This implies that (r1, θ1, ϕ1) = (r2, θ2, ϕ2).

• (4): We can compute DS(r0, θ0, ϕ0) as follows:

[DS(r0, θ0, ϕ0)] =

sinϕ0 cos θ0 −r0 sinϕ0 sin θ0 r0 cosϕ0 cos θ0
sinϕ0 sin θ0 r0 sinϕ0 cos θ0 r0 cosϕ0 sin θ0

cosϕ0 0 −r0 sinϕ0

 . (163)

As an added bonus, this also shows that S is a C1−mapping from D◦ →M !
One can compute that det[DS(r0, θ0, ϕ0)] = r20 sinϕ0. This implies that the solution

to [DS(r0, θ0, ϕ0)]

ṙθ̇
ϕ̇

 =

0
0
0

 is

ṙθ̇
ϕ̇

 =

0
0
0

. By the theorem in Discussion

Supplement 5, we deduce that this linear transformation is injective.

• (5) can be easily checked since γ(∂D) refers to either disks (fixed θ or ϕ, and let one
angle and one radius parameter varies) or spherical shells (fixed r, and let both θ and
ϕ varies) in R3, in which each of them are of 3−dimensional volume of 0 (let alone,
its intersection with compact subsets of R3).

Example 130. (Spherical Shell in Spherical Coordinates.) Show that the map

S :

(
θ
ϕ

)
→

sinϕ cos θ
sinϕ sin θ
cosϕ

 (164)

with 0 ≤ θ ≤ 2π, and 0 ≤ ϕ ≤ π, parametrizes spherical surface/shell of radius 1 from the
origin, with polar angle θ, and the angle from the north pole ϕ.
We shall check the conditions as in Definition 122.

• Here, M ⊂ R3, with the manifold M given by the spherical shell.

• D = [0, 2π]× [0, π], with

∂D = ({0} × [0, π]) ∪ ({2π} × [0, π])

∪ ([0, 2π]× {0}) ∪ ([0, 2π]× {π})
(165)
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with each piece having vol2 = 0. Thus, vol2(∂D) = 0. (Note that it is 2 here, since we
are actually parametrizing a 2−dimensional manifold!)

• (1) M ⊂ S(D). Indeed, for every (x, y, z) ∈M , we can find a value of (θ, ϕ) ∈ D such

that S
(
θ
ϕ

)
=

xy
z

. This is because since (x, y, z) on the spherical shell (with r = 1)

can be written in spherical coordinates as x = sinϕ cos θ, y = sinϕ sin θ, z = cos θ, we
shall pick the value of (θ, ϕ) obtained from spherical coordinates and place it in the
argument for S.

• (2) S(D◦) ⊂ M . In fact, one can show that S(D) = M (from (1)). This implies
that S(D◦) ⊂ M (by taking a subset D◦ of the domain D, we should get an output
S(D◦) ⊂ S(D) =M)

• (3) S : D◦ → M is injective. By definition of injectivity, suppose that we have
(θ1, ϕ1), (θ2, ϕ2) ∈ D◦, then S(θ1, ϕ1) = S(θ2, ϕ2) implies that we have

sinϕ1 cos θ1 = sinϕ2 cos θ2

sinϕ1 sin θ1 = sinϕ2 sin θ2

cosϕ1 = cosϕ2

(166)

From the third equation and the corresponding domain ϕ ∈ (0, ϕ) (recall that we are
looking at D◦ so the boundary points are excluded!), equality of cosines must imply
the equality of its argument (since cos is injective on (0, ϕ)). Thus, this implies the
equality of sin(ϕ1) = sin(ϕ2), which means that we can drop the sinϕ terms in the
second equation. Now, since sin θ1 = sin θ2 and cos θ1 = cos θ2 for θ ∈ (0, 2π), we
must obtain that θ1 = θ2 necessarily. This thus implies that (θ1, ϕ1) = (θ2, ϕ2), and
thus the injectivity of S.

• (4): We can compute DS(r0, θ0, ϕ0) as follows:

[DS(θ0, ϕ0)] =

− sinϕ0 sin θ0 cosϕ0 cos θ0
sinϕ0 cos θ0 cosϕ0 sin θ0

0 − sinϕ0

 . (167)

One can show that the columns are linearly independent. Consider α, β ∈ R and the
vector equation:

α

− sinϕ0 sin θ0
sinϕ0 cos θ0

0

+ β

cosϕ0 cos θ0
cosϕ0 sin θ0
− sinϕ0

 =

0
0
0

 . (168)

As an added bonus, this also shows that S is a C1−mapping from D◦ →M !
We say that the columns are linearly independent if α = β = 0 necessarily. By
comparing the third component, either we have sinϕ0 = 0 or β = 0. Since ϕ0 ∈ (0, π)
(reminder: we are working in D◦, so the boundary points are excluded), the former
is unattainable, and thus β = 0 necessarily. Looking at the first two components, we
must have either α = 0 or both sin θ0 = cos θ0 = 0. The latter is unattainable for any
possible θ ∈ R that you can think of, and therefore α = 0 necessarily. By the theorem
in Discussion Supplement 5, we deduce that this linear transformation is injective.

• (5) can be easily checked since γ(∂D) refers to either horizontal circles (for a fixed
ϕ and let θ varies) or vertical half-circles (for a fixed θ and let ϕ varies) in R2, in
which each of them are of 2−dimensional volume of 0 (let alone, its intersection with
compact subsets of R2).

Last but not least, we introduce the concept of tangent spaces below:
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Definition 131. Let M ⊂ Rn be a k−dimensional manifold. For every z0 ∈ M , pick an
open neighborhood U of z0 such that there exists a C1−mapping f : Rk → Rn−k (assuming
k < n) that

M ∩ U = {(x, f(x)) : x ∈ U} = Graph(f). (169)

The tangent space to M at z0 is thus the graph of [Df(z0)], given by

Tz0
M = {(x, [Df(z0)](x)) : x ∈ Rk} = Graph([Df(z0)]). (170)

Note that for Tz0
M , we are talking about the graph of a linear transformation [Df(z0)]. This is

subtly different from that in the case of M , in which we were talking about the graph of a C1−
mapping f .

We can naturally generalize this for manifolds representing vanishing locus and represented by
parametrization, as follows:

Theorem 132. (Tangent spaces for vanishing locus.) Let f : Rn → Rn−k be a C1−mapping
in which a manifold M is given by M = V (f). Suppose that [DF (z0)] is surjective for some
z0 ∈M . Then, a

Tz0(M) = ker[DF (z0)] = {x ∈ Rn : [DF (z0)](x) = 0} (171)

aker here refers to the kernel of the mapping, which refers to a subset of the domain of the mapping that maps
to the zero vector in the co-domain.

Theorem 133. (Tangent spaces of manifold represented by parametrization.) Let U ⊂ Rk

be an open set, and let γ : U → Rn be a parameterization of a manifold M . Then, for all
u ∈ U , a

Tγ(u)M = Im([Dγ(u)]) = {[Dγ(u)](x) : x ∈ Rn}. (172)

aIm here refers to the image. Thus, we are looking at the image of the linear transformation [Dγ(u)] : Rn →
Rn−k.

With that, we shall take a look some examples below:
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Example 134. (i) Recall from one of the examples in Discussion Supplement 5 that the
vanishing locus for

F

xy
z

 = sin(x+ yz) (173)

with F : R3 → R, is a smooth surface (2−dimensional manifold embedded in R3). We
shall denote the surface as M = V (F ). Furthermore, we have computed the corresponding
Jacobian matrix, which for a given z0 = (a, b, c) ∈M , is given byDF

ab
c

 = [cos(a+ bc), c cos(a+ bc), b cos(a+ bc)]. (174)

To compute Tz0
M , we have to compute ker[DF (z0)], that is, we want to describe the solu-

tion space of

[DF (z0)]

ẋẏ
ż

 =

0
0
0

 . (175)

for solutions

ẋẏ
ż

. a Indeed, from (175) and Theorem 132, we have

Tz0
M =


ẋẏ
ż

 ∈ R3 : cos(a+ bc)ẋ+ c cos(a+ bc)ẏ + b cos(a+ bc)ż = 0

 . (176)

(ii) Furthermore, in the same Discussion Supplement, we have considered the manifold M ′

given by

M ′ =




x
y
z

F (x, y, z)

 ∈ R4 :

xy
z

 ∈ R3

 . (177)

The corresponding parametrization is given by

γ

xy
z

 =


x
y
z

f(x, y, z)

 . (178)

One can check that this is indeed a parametrization (in view of Definition 122). Then, fix
some z0 = (a, b, c, d) ∈M . We can compute the following

[Dγ(z0)] =


1 0 0
0 1 0
0 0 1

cos(a+ bc) b cos(a+ bc) c cos(a+ bc)

 . (179)

Then, in view of Theorem 133, we compute

[Dγ(z0)]

ẋẏ
ż

 =


ẋ
ẏ
ż

cos(a+ bc)ẋ+ c cos(a+ bc)ẏ + b cos(a+ bc)ż

 . (180)
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In linear algebra notation, as we allow ẋ, ẏ, and ż to take any values on R, we have

Im([Dγ(z0)]) = span




1
0
0

cos(a+ bc)

 ,


0
1
0

c cos(a+ bc)

 ,


0
0
1

b cos(a+ bc)




=

ẋ


1
0
0

cos(a+ bc)

+ ẏ


0
1
0

c cos(a+ bc)

+ ż


0
0
1

b cos(a+ bc)

 : ẋ, ẏ, ż ∈ R

 .

(181)

aIt is a convention to use the standard euclidean alphabets with a dot on top of it to symbolize “small incre-
ments”, consistent with notations from Physics.
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Exercises:

Exercise 21. (Spherical disks in Spherical Coordinates.) Show that the map

S :

(
r
ϕ

)
→

r cos θr sin θ
0

 (182)

with 0 ≤ r < ∞, 0 ≤ θ ≤ 2π, parametrizes R2 × {0} by the distance from the origin r and
the polar angle θ (with ϕ = π

2 ).

Exercise 22. Consider the vanishing locus for the function f : R2 → R given by

f(x, y) = x+ x2 + y2 − 2. (183)

Here, V (f) describes a curve in R2.

(i) Verify that V (f) is indeed a smooth curve in embedded in R2.

(ii) Determine the equation for the tangent line to this curve at (1, 0).

(iii) Compute the tangent space T(1,0)V (f).

Exercise 23. (Bonus - Connected subsets in R2). Consider X = B1((0, 0)) and Y =
B1((1, 1)). Show that X ∪ Y is not a connected subset of R2.
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Partial Solutions/Hints:

• Exercise 21. A close analog would be to follow Example 130.

• Exericse 22.

(i) Compute [Df(x, y)] = [1 + 2x, 2y] and show that it is surjective for all (x, y) ∈ V (f).
Either do this directly, or consider g(x, y) = x+x2+ y2 and see that it only has a critical
at x = − 1

2 , y = 0, that does not lie on V (f) (by direct verification). The logic then
follows from Challenge Problem 2 Questions 4 and 5.

(ii) In a standard calculus class, this can be done by expressing y in terms of x. Here, we
have y = ±

√
2− x− x2. However, note that dy

dx blows up at (1, 0). Instead, we shall
compute dx

dy . In fact, this can be done explicitly by taking d
dy on x + x2 + y2 − 2 = 0.

This yields
dx

dy
+ 2x

dx

dy
+ 2y = 0. (184)

Thus, at (1, 0), we solve to obtain dx
dy = 0. The corresponding tangent line is given by

x− 1 = dx
dy (1, 0)(y − 0), equivalently, x = 1 .

(iii) By definition, T(1,0)V (f) = ker([Df(1, 0)]) = ker([3, 0]). One can check that this is

indeed given by span
{(

0
1

)}
=

{(
0
ẏ

)
: ẏ ∈ R

}
.

• Exercise 23. This is equivalent to showing that X and Y are relatively open in X ∪Y . This is
true if you pick the open set U = B1.01((0, 0)) and V = Y so that X = U ∩X and U is open
in R2, similarly, Y = V ∩Y with V being open in R2. Furthermore, we just have to show that
U and V are disjoint.
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7 Discussion 7

Summary for Lectures 16 - 17.

In view of the fact that I was not able to cover an example on the computation of tangent spaces,
you should refer back to the Discussion Supplement from the previous week and work through
that example if you have the time!

The focus of this discussion is to compute line/surface intergrals and in general, integrals on man-
ifolds.

Idea: At each point x on a manifold M , we can approximate the tangent plane by a small paral-
lelpiped. Thus, to compute the volume of a manifold, one just have to sum up the volume of these
parallelpiped infinitesimally over the manifold.

Thus, before we introduce the concept of “manifoldal” integration (ie line/surface integrals in
particular), we shall introduce some key definitions below:

Theorem 135. (Volume of a parallelpiped in R3.) Let D be a parallelpiped spanned by
u,v, and w in R3.a Then, the volume of D is given byb

vol3(D) = |u · (v ×w)| =
∣∣det (u|v|w)∣∣ . (185)

aTo be exact, if we mean span in the linear algebra sense, then we are getting the entire R3, in which the
volume here would be +∞. Spanned here refers to the parallelpiped formed by a linear combination of u,v,
and w such that the coefficients are at most 1. For example, the mathematical definition of D would be D =
{αu+ βv + γw : 0 ≤ α+ β + γ ≤ 1}. Indeed, if we let u = (2, 0, 0),v = (0, 2, 0), and w = (0, 0, 3), we get a
cuboid in R3 with side lengths 2, 2, and 3 and thus obtain a volume of 2× 2× 3 = 12. If you compute the volume
according to the definition above, you should also obtain 12.

bThis can be understood as lining the column vectors up as columns side by side to form a matrix to ask the
determinant for!

Definition 136. Given T = [Tij ] ∈ Mm×n(R), the transpose matrix T⊤ ∈ Mn×m(R) is
given by

T⊤ = [Mji]. (186)

Theorem 137. LetD be a k−dimensional parallelpiped spanned by v1, · · · ,vk in Rk. Then,
consider the k × k matrix given by

T :=
(
v1| . . . |vk

)
. (187)

Then, we have

volk(D) = |det(T )| =
√
det(T⊤T ). (188)

Definition 138. Let D be a k−dimensional parallelpiped spanned by v1, · · · ,vk in Rn.
Then, consider the k × n matrix given by

T :=
(
v1| . . . |vk

)
. (189)

Then, we have

volk(D) =
√
det(T⊤T ). (190)
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Example 139. Consider the 2−dimensional parallelpiped D in R3 spanned by

u =

1
2
3

 , and v =

4
5
6

 , (191)

we can compute

• The 3−dimensional volume, vol3(D) = 0. (Since this is a 2−dimensional surface and
we are asking for the 3−dimensional volume!)

• The 2−dimensional volume, vol2(D), can be computed as follows. Compute

T =

1 4
2 5
3 6

 , (192)

and thus

T⊤ =

(
1 2 3
4 5 6

)
. (193)

Thus, we have

T⊤T =

(
1 2 3
4 5 6

)1 4
2 5
3 6

 =

(
14 32
32 77

)
. (194)

Therefore, we have

det(T⊤T ) = det

(
14 32
32 77

)
= 14 · 77− 322 = 54. (195)

Thus, the 2−dimensional volume is given by

vol2(D) =
√
det(T⊤T ) =

√
54. (196)

• On a similar note, if we compute

TT⊤ =

17 22 27
22 29 36
27 36 45

 , (197)

then det(TT⊤) = 0. Indeed, we have det(T⊤T ) = det(TT⊤) so the order here is
important!
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Now, we proceed to define the volume of manifolds:

Definition 140. Let M ⊂ Rn be a differentiable k−dimensional manifold, let A ⊂ Rk be a
set with well-defined volume, and let γ : A → Rn be a parametrization of M .a Then, we
haveb

volk(M) :=

∫
γ(A)

dV (x)

=

∫
A

√
det([Dγ(u)]⊤[Dγ(u)])dV (u).

(198)

aIt does not matter if A is compact, or just an interior of a compact set, or a mixture of both. As long as we
pick X in the general definition of parametrization to be ∂A, we always have γ(A) and A in the integral above.
Note that this does not depends on say if we are integrating on A \ X or A, since X has k−dimensional volume
0, and can be thought of “a set of measure 0” so this does not affect the integral.

bHere, I have written down the explicit dependence so that one thing is clear; in the first expression, we are
looking at the n−dimensional volume dV (x) while in the second, we are looking at the k−dimensional volume
dV (u). Here, γ : u ∈ A → x ∈ Rn.

In view of this, we have the following definitions:

Definition 141. Let C be a curve in Rn parametrized by a C1−function r : [a, b] ⊂ R→ Rn.
(Note that this implies that [Dr(u)] = r′(u) is injective for all u ∈ [a, b].)
Then, the arc length s of C is given by∫

C

ds =

∫ b

a

||r′(t)||dt. (199)

Note that if r(t) = (r1(t), · · · , rn(t)), then r′(t) = (r′1(t), · · · , r′n(t)) and
||r′(t)|| =

√
r21(t) + r22(t) + · · · r2n(t).

For surfaces, let us consider the case in which n = 3 (ie manifolds embedded in R3).

Theorem 142. Let D be a parallelogram spanned by u and v in R3. Then,

vol2(D) = area(D) = ||u× v||. (200)

Thus, we have

Theorem 143. Let S be a surface parametrized by a C1 function γ : U ⊂ R2 → R3. Then,
the areaa of the parallelogram near a point P ∈ S is given by

area(D) =

∣∣∣∣∣∣∣∣∂γ(u, v)∂u
× ∂γ(u, v)

∂v

∣∣∣∣∣∣∣∣ . (201)

Thus, we have ∫
S

dA =

∫
U

∣∣∣∣∣∣∣∣∂γ(u, v)∂u
× ∂γ(u, v)

∂v

∣∣∣∣∣∣∣∣dA. (202)

aSimilar to Theorem 135, area here is understood in the span way, in the sense that for every unit increase in
each component in u and v, this is the amount that “parallelogram” gets scaled by. As understood in the sense
of “Jacobian”, this is really clear since we can understand this as dxdydz“ = ”

∣∣∣ ∂(x,z,y)∂(u,v)

∣∣∣dudv, where
∣∣∣ ∂(x,z,y)∂(u,v)

∣∣∣
represents the “Jacobian” in this case.

For cases in which n ̸= 3, we will have to fall back to Definition 140.
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Before we end off with a myraid of examples, one should note that we can generalize this to
integrals of functions on manifolds (in particular, curves and surfaces) as follows:

Theorem 144. (Scalar Line Integral.) Let C be a curve in Rn parametrized by a C1 function
r : [a, b] ⊂ R → Rn. If f : Rn → R is continuous, then we write the line integral as

∫
C
fds

and it can be computed as follows:∫
C

fds =

∫ b

a

f(r(t))||r′(t)||dt. (203)

Theorem 145. (Surface Integral in R3.) Let S be a surface in Rn parametrized by a C1

function γ : U ⊂ R2 → R3. If f : R3 → R is continuous, then we write the surface integral
as
∫
S
fdA and it can be computed as follows:∫ ∫

S

fdA =

∫ ∫
D

f(γ(u, v))

∣∣∣∣∣∣∣∣∂γ(u, v)∂u
× ∂γ(u, v)

∂v

∣∣∣∣∣∣∣∣dA(u, v). (204)

Theorem 146. (Integrating functions over manifolds.) Let M ⊂ Rn be a differentiable
k−dimensional manifold in Rn, and A ⊂ Rk be a set with well-defined volume, and let
γ : A → Rn be a parametrization of M . Let f : M → R be a function. We say that f is
integrable over M if the integral on the right hand side of the following exists:∫

M

fdV :=

∫
A

f(γ(u))
√
det([Dγ(u)]⊤[Dγ(u)])dV (u) (205)
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Example 147. Arc length of a semicircle. Consider an upper half (open) circle in R2 cen-
tered at the origin with radius r as follows. The following parametrizes this semicircle:

γ(t) =

(
cos(t)
sin(t)

)
(206)

for 0 < t < π. (One can check that this indeed parametrizes the upper half semicircle. As
checking that a parametrization is indeed one takes a lot of effort, you should only check it
in the exam if the question requires you to!)
We can compute the arc length by Definition 141 as follows.

• γ′(t) =

(
− sin(t)
cos(t)

)
.

• ||γ′(t)|| =
√
sin2(t) + cos2(t) = 1.

• Thus, we have ∫
C

dS =

∫ π

0

||γ′(t)||dt =
∫ π

0

dt = π. (207)

Example 148. Surface Integral - Area of a graph of a function f(x, y) in R2. Consider
f(x, y) = x2 + y3 with f : R2 → R. What is the area of the graph of f(x, y) above the
square (0, 1)× (0, 1)?

Suggested Solution: We can parametrize the surface by

γ

(
x
y

)
=

 x
y

x2 + y3

 . (208)

The required area is given by∫ ∫
S

dA =

∫ 1

0

∫ 1

0

∣∣∣∣∂γ(x, y)∂x
× ∂γ(x, y)

∂y

∣∣∣∣dxdy. (209)

Thus, we have ∣∣∣∣∂γ(x, y)∂x
× ∂γ(x, y)

∂y

∣∣∣∣ =
∣∣∣∣∣∣
 1

0
2x

×
 0

1
3y2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
−2x−3y2

1

∣∣∣∣∣∣
=
√
1 + 4x2 + 9y2

(210)

and the required area is given by∫ 1

0

∫ 1

0

√
1 + 4x2 + 9y2dxdy. (211)

Note that it is challenging to compute this integral analytically. Numerically, we have that
the integral gives 1.9322.
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Example 149. (Hubbard 5.3.6, modified.) Let S be part of the paraboloid of revolution
z = x2 + y2 where z < 9.

(i) Verify the numerical values of the following integrals:∫ 3

0

r3
√

4r2 + 1dr =
1

120

(
1 + 1961

√
37
)

(212)

and ∫ 3

0

r5
√

4r2 + 1dr =
1

840

(
−1 + 87949

√
37
)
. (213)

(ii) Find a parametrization for S (you do not have to verify rigorously that it is indeed a
parametrization of S).

(iii) Compute the integral
∫ ∫

S
(x2 + y2 + 3z2)dA using the general formula in Theorem

146.

Suggested Solutions:

(i). This can be computing using an appropriate substitution. Note that d
dr (4r

2 + 1) = 8r,
so we first use the substitution R = 4r2 + 1 (thus dR = 8rdr) to obtain∫ 37

1

r3
√
R
dR

8r
=

∫ 37

1

r2
√
R
dR

8

=
1

8

∫ 37

1

(
R− 1

4

)√
RdR

=
1

32

∫ 37

1

R
3
2 −R 1

2 dR

=
1

32

(
2R

5
2

5
− 2R

3
2

3

)R=37

R=1

=
1

120

(
1 + 1961

√
37
)
.

(214)

A similar computation can be used to verify the second integral.

(ii). The corresponding parametrization is given by γ : [0, 3]× [0, 2π]→ S ⊂ R3 where

γ

(
r
θ

)
=

r cos θr sin θ
r2

 . (215)
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(iii). We can do the integration as follows:

• Compute [Dγ(r, θ)] =

cos θ −r sin θ
sin θ r cos θ
2r 0

.

• Now, compute

[Dγ(r, θ)]
⊤
[Dγ(r, θ)] =

(
cos θ sin θ 2r
−r sin θ r cos θ 0

)cos θ −r sin θ
sin θ r cos θ
2r 0


=

(
4r2 + 1 0

0 r2

)
.

(216)

•
√

det([Dγ(r, θ)]
⊤
[Dγ(r, θ)]) = r

√
4r2 + 1.

• Now, the integral becomes∫ ∫
S

(x2 + y2 + 7z2)dA =

∫ 3

0

∫ 2π

0

(r2 + 7r4)r
√
4r2 + 1dθdr

= 2π

(
1

120

(
1 + 1961

√
37
)
+ 7× 1

840

(
−1 + 87949

√
37
))

=
2997

√
2π

2
.

(217)
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Exercises:

Exercise 24. With respect to Example 148, consider instead that we have appealed to the
general definition of the volume of a 2−dimensional manifold as in Definition 140. The
two approaches will agree as long as the following is true:∣∣∣∣∂γ(x, y)∂x

× ∂γ(x, y)

∂y

∣∣∣∣ =√det([Dγ(x, y)]⊤[Dγ(x, y)]). (218)

In the same example, we have also shown that∣∣∣∣∂γ(x, y)∂x
× ∂γ(x, y)

∂y

∣∣∣∣ =√1 + 4x2 + 9y2. (219)

Thus, it remains to show that√
det([Dγ(x, y)]⊤[Dγ(x, y)]) =

√
1 + 4x2 + 9y2. (220)

By direct computation, show that this is indeed true for the parametrization γ as defined in
Example 148.

Exercise 25. (Hubbard Example 5.3.7.) Let p, q be two integers, and consider the curve in
R4 parametrized by

γ(t) =


cos(pt)
sin(pt)
cos(qt)
sin(qt)

 , 0 ≤ t ≤ 2π. (221)

Compute the arc length of the curve.

Exercise 26. (Hubbard Exercise 5.3.18.) A gas has density ρ(x, y, z) = C
r where

r =
√
x2 + y2 + z2 for some constant C > 0. If 0 < a < b, what is the mass of the gas

between the concentric spheres r = a and r = b?

Note that the mass of a gas in a region D is given by∫ ∫ ∫
D

ρ(x, y, z)dV (x, y, z). (222)

Exercise 27. (Hubbard 5.3.8.) Compute the surface area of the part of the paraboloid of
revolution z = x2 + y2 where z ≤ 1.

Exercise 28. (Hubbard 5.3.15, modified.)
Consider the parametrization of the surface of a unit sphere in R4 by the following map:

γ

θφ
ψ

 =


cosψ cosφ cos θ
cosψ cosφ sin θ

cosψ sinφ
sinψ

 , (223)

with φ,ψ, θ satisfying −π/2 ≤ φ ≤ π/2,−π/2 ≤ ψ ≤ π/2, and 0 ≤ θ < 2π. (One can check
that this indeed parametrizes the surface of a unit sphere in R4.) Use this to compute the
3−dimensional volume of the surface of a unit sphere in R4.
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Partial Solutions/Hints:

• Exercise 24. This is just a direct computational exercise. You can check that

[Dγ(x, y)] =

 1 0
0 1
2x 3y2

 . (224)

• Exercise 25. One can check that ||γ′(t)|| =
√
p2 + q2 independent of t. Thus, the arc length

can be computed to give 2π
√
p2 + q2.

• Exercise 26. Use spherical coordinates in Discussion Supplement 4 (note that this is equiva-
lent to a change of variables question since we are computing the integral of functions on a
3−dimensional manifold embedded in R3, thinking of a region in R3 parametrized by spher-
ical coordinates), and check that you did not miss out on the spherical Jacobian r2 sin(ϕ). It
should reduce to ∫ b

a

∫ 2π

0

∫ π

0

Cr sin(ϕ)dθdϕ = 2Cπ
(
b2 − a2

)
. (225)

• Exercise 27. Similar to Example 149, but replace x2 + y2 + 7z2 with 1, and now r ∈ [0, 1].
You should obtain π

6

(
5
√
5− 1

)
. Note that you can repeat a similar argument (ie using an

equivalent substitution) as to (i) to evaluate any integral that appears.

• Exercise 28. This is an exercise on computing
√
det([Dγ(θ, φ, ψ)]

⊤
[Dγ(θ, φ, ψ)]) and the cor-

responding integral. One can check that
√
det([Dγ(θ, φ, ψ)]

⊤
[Dγ(θ, φ, ψ)]) = sin2(ψ) sin(φ)

and the volume is thus 2π2.
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8 Discussion 8

Summary for Lectures 18 - 19 and Concepts from Challenge Problem 3.

Definition 150. A vector field on D ⊂ Rn is a function F : D ⊂ Rn → Rn. F assigns a
vector F(p) ∈ Rn to each point p ∈ D. Furthermore,

• F(p) is a unit vector field if ||F(p)|| = 1 for all p ∈ D.

• F(p) is a radial vector field if F(p) = F(r) for all p ∈ D, where r = ||p|| =√
x21 + ...+ x2n.a

aIn R3, instead of being a function of x, y, and z, it only depends on r =
√

x2 + y2 + z2. Example:

F(x, y, z) = x is not radial, while F(x, y, z) =

(
x2 + y2 + z2

1

)
=

(
r2

1

)
is radial.

Definition 151. Given a curve C,

• A continuous choice of a tangent vector on C is called an orientation.

• A curve with a chosen orientation is called an oriented curve.

• Going along the choice of direction is known as the positive direction, while going
against the choice of direction is known as the negative direction.

Definition 152. Given an oriented curve C, let T(p) be the unit tangent vector of C at
the point p, pointing in the positive direction. Let F be a given vector field. Then, the
tangential component of F at p is given by

T(p) · F(p). (226)

Remark 153. Note that this is consistent with our physical intuition of “tangential component”.
Since T is a unit tangent vector, then by the definition of dot product, we have

T · F = ||T||||F|| cos(θ) = ||F|| cos(θ), (227)

where θ refers to the angle between T and F.

Theorem 154. The line integral of F along an oriented curve C is the integral of the
tangential component of F: ∫

C

F · r :=

∫
C

(F ·T)ds. (228)

Remark 155. In physical terms, we say that
∫
C
F · r is the work done by a vector field on an object

moving along the curve C, while −
∫
C
F · r is the work done against a vector field.

For explicit computations, we have
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Theorem 156. Let r(t) be a positive oriented regular parametrization of an oriented curve
C for a ≤ t ≤ b. Then, ∫

C

F · dr =

∫ b

a

F(r(t)) · r′(t)dt. (229)

Note that one can draw parallel between a vectorial line integral (in the theorem above), with
a scalar line integral in the previous discussion if F assigns a scalar at each point (instead of a
vector). To end off on line integrals, here are some properties of it:

Theorem 157. (Properties of Vector Line Integrals.) Let C be a C1 oriented curve, and let
F and G be vector fields.

• Linearity:
∫
C
(F+G) · dr =

∫
C
F · dr +

∫
C
G · dr, and∫

C
λF · dr = λ

∫
C
F · dr for any λ ∈ R.

• Reversing orientation:
∫
−C

F · dr = −
∫
C
F · dr.

• If C is the union of piecewise disjoint C1 curves C1 ∪ ... ∪ Cm, then we have∫
C

F · dr =

∫
C1

F · dr+
∫
C2

F · dr+ ...+

∫
Cm

F · dr. (230)

Next, we shall introduce some of the common differential operators on scalar fields f and vector
fields F as follows.

Definition 158.

• Let f : D ⊂ Rn → R where D is an open subset of Rn. Then, the gradient of f ,
denoted by ∇f , is given by

∇f =


∂f
∂x1

...
∂f
∂xn

 . (231)

• Let F : D ⊂ Rn → Rn where D is an open subset of Rn. Then, the divergence of f ,
denoted by divF or ∇ · F, is given by

∇ · F =
∂F1

∂x1
+ · · ·+ ∂Fn

∂xn
=


∂

∂x1

...
∂

∂xn

 ·
F1

...
Fn

 (232)

where

F =

F1

...
Fn

 . (233)

• Let F : D ⊂ R3 → R3 where D is an open subset of R3 (note here that n = 3). Then,
the curl of f , denoted by curlF or ∇× F, is given by

∇× F =


∂

∂x2
F3 − ∂

∂x3
F2

−
(

∂
∂x1

F3 − ∂
∂x3

F1

)
∂

∂x1
F2 − ∂

∂x2
F1

 = det

 i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

 =

 ∂
∂x
∂
∂y
∂
∂z

×
F1

F2

F3

 (234)

where (x1, x2, x3) can be understood as (x, y, z) in R3.
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Definition 159. A vector field F : Rn → Rn is conservative if there exists a differentiable
function f(x1, · · · , xn) such that

F = ∇f (235)

for some scalar (potential) function f : Rn → R.

Theorem 160. (Fundamental Theorem for Conservative Vector Fields.) Let F be a conser-
vative vector field on a domain D; that is, there exists a C1 (smooth/continuously differ-
entiable) f such that F = ∇f . Given any oriented curve C from P to Q, if r is a positively
oriented parametrization along the curve C in D, then∫

C

F · dr = f(Q)− f(P ). (236)

In particular, F is path-independent.

Note the following result from Challenge Problem 3:

Theorem 161. For an arbitrary conservative vector field F on an open connected set D,
any two potential functions F differ by a constant.a

aThis generalizes the result from Challenge Problem 3, in which instead of demanding that D is an open disk,
we could work with arbitrary open sets in Rn that are connected.

Thus, we have the following

Corollary 162. Let F = ∇f be a conservative vector field in a domain D. If r is a positively
oriented parametrization along a closed curve C in D, then we have∮

C

F · dr = 0, (237)

where the symbol
∮
C

refers to an integration along the closed loop C.

Lemma 163. The following is true for a smooth (or at least C2; twice continuously differentiable)
scalar field f : R3 → R or a vector field F : R3 → R3:

•
∇× (∇f) = 0. (238)

•
∇ · (∇× F) = 0. (239)

Theorem 164. (Curl of Conservative Vector Fields.) (Assume that F are sufficiently
smooth.)

• In R2, if F =

(
F1

F2

)
is conservative, then ∂F1

∂y = ∂F2

∂x for all (x, y) ∈ R2.

• In R2, if F is conservative, then curl(F ) = ∇×F = 0. Equivalently, F must satisfy the
cross-partial relaton below for every (x, y, z) ∈ R3:a

∂F3

∂y
=
∂F2

∂z
,
∂F1

∂z
=
∂F3

∂x
, and

∂F2

∂x
=
∂F1

∂y
. (240)

aOr in the corresponding domain D.

The condition for F : R2 → R2 can be thought of as curl(G) = 0, where G = (F1, F2, 0) = (F, 0).
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Theorem 165. Let F be a vector field on a simply-connected domain D. If F satifies the
cross-partial condition, then F is conservative.

Note that we can think of simply-connected domains as connected domains and are without
holes. Furthermore, the requirement that D is simply-connected is necessary. Else, we can con-

sider F(x, y) =

(− x
x2+y2

y
x2+y2

)
defined on R2 \ {0}. It satisfies the cross-partial relation but it is not

conservative.
In the next few pages, we shall explore a myriad of examples on line integrals, conservative vector
fields and its application on evaluating line integrals.

Example 166. For each of the oriented curves C in R3 below, compute the line integral∫
C
F · dr of the vector field

F(x, y, z) =

3x2 − 6yz
2y + 3xz
1− 4xyz2

 (241)

with respect to (a suitable parametrization) r.

(a) C is a straight line connecting (0, 0, 0) to (1, 1, 1).

(b) C is the curve parametrized by r(t) = (t, t2, t3) for t ∈ [0, 1].

For (a), you do not need to check that your choice of parametrization is indeed a
parametrization.

(c) Deduce that F is not conservative.

Suggested Solutions:

(a) A suitable parametrization of the line segment would be r′(t) = (t, t, t) for t ∈ [0, 1].
Using the formula in Theorem 156, we compute

• r′(t) = (1, 1, 1).

• F(r(t))·r′(t) = (3t2−6t2, 2t+3t2, 1−4t4)·(1, 1, 1) = −3t2+2t+3t2+1−4t4 = 1+2t−4t4.
(Note that x = y = z = t by our parametrization.)

• Then,
∫
C
F · dr =

∫ 1

0
F(r(t)) · r′(t)dt =

∫ 1

0
(1 + 2t− 4t4)dt = 6

5 .

(b) Using the given parametrization, we compute

• r′(t) = (1, 2t, 3t2).

• F(r(t)) · r′(t) = (3t2 − 6t5, 2t2 + 3t4, 1 − 4t9) · (1, 2t, 3t2) = 6t2 + 4t3 − 12t11. (Note
that x = t, y = t2, and z = t3 by our parametrization.)

• Then,
∫
C
F · dr =

∫ 1

0
F(r(t)) · r′(t)dt =

∫ 1

0
(6t2 + 4t3 − 12t11)dt = 2.

(c) Note that for both parts, we are evaluating the vector line integral from (0, 0, 0) to
(1, 1, 1) via two different curves ((a) - line segment, (b) - curve). As they both yield different
values, this implies that the line integral is not path-independent, and thus F cannot be
conservative.
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Example 167. For each of the following vector fields F in R3, determine whether if it is a
conservative vector field. If it is, determine all possible potential functions f for F.

(a) F(x, y, z) =

 2xy3

x2z3

3x2yz2

 .

(b) F(x, y, z) =

3x2y
x3

5

 .

Suggested Solutions:

Note that R3 is a simply connected region. Thus, Theorem 164 and Theorem 165 acts in
both direction (ie F is conservative if and only if it satisfies the cross-partial relation.)

(a) Compute ∇× F to obtain

∇× F =

 0
−6xyz2

2xz3 − 6xy2

 ̸= 0. (242)

Since it does not satisfy the cross-partial relation (ie∇×F−0 for every (x, y, z) ∈ D = R3),
then F is not conservative.

(b) One can check that ∇ × F = 0. It remains to find all possible potential functions f .
Here, we propose two methods, in which the reader is free to pick up on whatever method
that works.

Method 1: Solving a linear system of (first order) PDEs (Partial Differential Equations). If
we would like F = ∇f for some f , this implies that we must have the following system
of (differential) equations below

∂f

∂x
= Fx = 3x2y

∂f

∂y
= Fy = x3

∂f

∂z
= Fz = 5.

(243)

• Integrating the first equation partially with respect to x, we have

f(x, y, z) = x3y + g1(y, z).

Here, the arbitrary constant g1 may depend on y and z (which is possible since upon
an application of ∂

∂x , it disappears).

• Similarly, we can integrate the second equation partially with respect to y to obtain

f(x, y, z) = x3y + g2(x, z).

(since we did a partial integration with respect to y, then the arbitrary constant will
have to depend on the other two variables x, z.)

• Analogously, we have
f(x, y, z) = 5z + g3(x, y)

from the third equation.

• By inspection, we can pick g1(y, z) = 5z, g2(x, z) = 5z, and g3(x, y) = x3y.
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This implies that we have
f(x, y, z) = x3y + 5z. (244)

Since all potential functions differ by a constant on an open connected domain (in which
R3 is), then all the possible potential functions are given by

f(x, y, z) = x3y + 5z + C (245)

for any arbitrary constant C. a

Method 2: Formulating a line integral to an arbitrary point (x, y, z). Since F is conserva-
tive, then we define

f(x, y, z) =

∫
C(x,y,z)

F · dr, (246)

where C(x, y, z) is the line segment from (0, 0, 0) to (x, y, z), in which we can parametrize
it by r(t) = (tx, ty, tz) = (x(t), y(t), z(t)) for t ∈ [0, 1]. Note that such a definition is legal
since the starting and ending points are fixed, and by the fact that F is conservative, it
should not depend on the path taken and thus a line segment will do the job. Now, all we
are left to do is to compute the line integral on the right.

• r′(t) = (x, y, z).

• Then, we have

F(r(t)) · r′(t) = (3(x(t))2(y(t)), (x(t))3, 5) · (x, y, z)
= (3(tx)2(ty), (tx)3, 5) · (x, y, z)
= 4x3yt3 + 5z.

(Note that x(t) = tx, y(t) = ty, and z(t) = tz by our parametrization.)

• Finally, we compute
∫
C(x,y,z)

F · dr =
∫ 1

0
F(r(t)) · r′(t)dt =

∫ 1

0
(4x3yt3 + 5z)dt =

x3y + 5z.

Note that the above is a potential function and not all possible potential functions. To
conclude, we appeal to the fact that all potential functions differ by a constant, and thus,
we have that potential functions are given by

f(x, y, z) = x3y + 5z + C (247)

for any arbitrary constant C.

aHere, we note that we could have chosen g1 = 5z + C, g2 = 5z + C, and g3 = x3y + C and arrive at this
conclusion instantly.
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Example 168. Consider the following path ABCDEF as shown in the diagram below. Note
that from C to D, this is connected by the curve y = (x− 2)2 for 2 ≤ x ≤ 3. From E to F, it
is connected by the sin curve y = sin(πx) + 4 for 0 ≤ x ≤ 1. Now, consider the vector field
F : R2 → R2 given by

F(x, y) =

(
y

x+ 1

)
. (248)

Evaluate the line integral along the oriented curve ABCDEF∫
ABCDEF

F · dr. (249)

Suggested Solution:

Note that F is conservative, since ∂F1

∂y = 1 = ∂F2

∂x . We can obtain the potential function f

such that F = ∇f by solving the system of differential equations below:

∂f

∂x
= y

∂f

∂y
= x+ 1

(250)

Doing the partial integration in the corresponding variables, we get

f(x, y) = xy + g1(y)

f(x, y) = xy + y + g2(x).
(251)

One can observe that a legal choice of potential function (pick g1 = y and g2 = 0) would be

f(x, y) = xy + y. (252)

Since F is conservative, by the Fundamental Theorem of Conservative Vector Fields, we
have that ∫

ABCDEF
F · dr = f(F )− f(A). (253)

Thus, we have ∫
ABCDEF

F · dr = f(0, 4)− f(0, 0) = 4− 0 = 4. (254)
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Exercises:

Exercise 29. Continuing from Example 166 with the vector field given in (241), compute
the line integral along the polygonal line joining (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1) in that
order.

Exercise 30. Consider the following vector field in R3, given by

F(x, y, z) =

 x+ z
−(y + z)
(x− y)

 . (255)

Determine if it is a conservative vector field. If it is, determine all possible potential func-
tions f for F.

Exercise 31. (ML Inequality.) Let C be a smooth curve in Rn, given by a parametrization
r : I → Rn where I ⊂ R is a compact interval. Let U ⊂ Rn be an open set with C = r(I) ⊂
U . Let F : U → Rn be a continuous vector field on U . Suppose that M ≥ 0 is a constant
such that for all p ∈ U , ||F(p)|| ≤M . Show that∣∣∣∣∫

C

F · dr
∣∣∣∣ ≤ML, (256)

where L is the length of the curve, which is given by
∫
C
1ds.

Exercise 32. Let F : R3 → R3 be a vector field given by

F(x, y, z) =
(
y2 cos(x) + z3, 2y sin(x)− 4, 3xz2 + 2

)
. (257)

Evaluate the work done by the vector field along the positively oriented curve C, which is
a straight line going from (0, 1,−1) to (π/2,−1, 2).
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Partial Solutions/Hints:

• Exercise 29. Break up the polygonal line into 3 line segments, with (0, 0, 0) → (0, 0, 1),
(0, 0, 1)→ (0, 1, 1), and (0, 1, 1)→ (1, 1, 1). These three line segments are parametrized by

r1(t) := (0, 0, t), t ∈ [0, 1]

r2(t) := (0, t, 1), t ∈ [0, 1]

r3(t) := (t, 1, 1), t ∈ [0, 1].

(258)

Hence, we have (using one of the properties for line integrals as in Theorem 157, we have∫
C

F · dr =

∫
C1

F · dr+
∫
C2

F · dr+
∫
C3

F · dr (259)

• Exercise 30. One can follow a similar procedure as Example 167, and obtain that F is
conservative with a potential function f(x, y, z) = 1

2

(
x2 + 2xy − y2 − 2yz

)
+ C for arbitrary

constant C.

• Exercise 31. We have∣∣∣∣∫
C

F · dr
∣∣∣∣ = ∣∣∣∣∫

I

F(r(t)) · r′(t)dt
∣∣∣∣ (by definition of line integrals)

≤
∫
I

|F(r(t)) · r′(t)|dt (by triangle inequality for integrals in Rn)

≤
∫
I

||F(r(t))||||r′(t)||dt (by Cauchy-Schwarz Inequality for dot product)

≤
∫
I

M ||r′(t)||dt (by the given assumption)

=M

∫
I

||r′(t)||dt (property of integrals allowing me to pull out a scalar)

=M

∫
C

1ds (by the definition of arc length, see the previous Discussion Supplement)

≤ML (by the given assumption).
(260)

• Exercise 32. Note that work done by the vector field along an oriented curve C is defined as
the line integral

∫
C
F · dr.

Check that F is conservative by computing ∇× F. By the Fundamental Theorem of Conser-
vative Vector Fields, we have

∫
C
F · dr = f(π/2,−1, 2) − f(0, 1,−1). It remains to find the

corresponding expression for f . One can appeal to the techniques mentioned in the previous
example, but as someone who loves PDE, I will only do Method 1 for this example. (You can
check that Method 2 will give you the same solution). This means that we have to solve the
system of PDEs below

∂f

∂x
= y2 cos(x) + z3

∂f

∂y
= 2y sin(x)− 4

∂f

∂z
= 3xz2 + 2.

(261)

Doing the partial integration in the corresponding variables, we get

f(x, y, z) = y2 sin(x) + xz3 + g1(y, z)

f(x, y, z) = y2 sin(x)− 4y + g2(x, z)

f(x, y, z) = xz3 + 2z + g3(x, y).

(262)

By observation, we can see that g1 = −4y + 2z, g2 = xz3 + 2z, and g3 = y2 sin(x)− 4y. (Just
“add” whatever that is missing that you can find from the other terms!) Thus, a potential
function is given by

f(x, y, z) = y2 sin(x) + xz3 − 4y + 2z. (263)
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Thus, the required work done is given by∫
C

F · dr = f(π/2,−1, 2)− f(0, 1,−1) = 15 + 4π. (264)
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9 Discussion 9

Summary for Lectures 20 - 21.

Definition 169. Given an oriented curve in R2, we say that the positive direction across
C is the direction that goes from left to right from the perspective along the positive orien-
tation of C.

Definition 170. Let n(p) be a unit vector normal to C at the point p, pointing in the positive
direction across C. Let F be a vector field. The normal component of F at p is given by
the dot product

n(p) · F(p).

Thus, we can define a flux integral in R2 across a curve C with respect to a vector field F as
follows:

Definition 171. The flux integral of a vector field F along an oriented curve C in R2 is the
integral of the normal component of F:∫

C

(F · n)ds. (265)

Theorem 172. Let r(t) = ⟨x(t), y(t)⟩a be a positively oriented regular parametrization of
an oriented curve C, with a ≤ t ≤ b. Observe that N(t) = ⟨y′(t),−x′(t)⟩ is normal to C.b

Then, ∫
C

(F · n)ds =
∫ b

a

F(r(t)) ·N(t) dt. (266)

aNote that ⟨a, b⟩ really just means
(
a
b

)
. Thus, we will abuse notation and occasionally switch around, or even

write it as (a, b) as long as the context is clear.
bNormal here means that N(t) · r′(t) = 0.

Remark 173. Note that n(t) = N(t)
||N(t)|| refers to the unit vector normal to C, while N(t) here reflects

its full length. (That is, it might not be of unit length!)

Example 174. (Parametrizing a parabola in R2. ) Find a positively oriented parametriza-
tion of the parabola y = x2 for 0 ≤ x ≤ 1, oriented from (0, 0) to (1, 1).

Suggested Solution: Set r(t) = ⟨t, t2⟩ for 0 ≤ t ≤ 1. Indeed, you can see that this
parametrizes the parabola. To verify that this is a positively oriented parametrization of
the parabola (see Definition in Discussion Supplement 8), we note that the continuous
choice of tangent vector on C is defined to be along the parabola, from (0, 0) to (1, 1). As
our parametrization is such that as t increases, we move along the curve from (0, 0) to
(1, 1), such a parametrization corresponds to a positively oriented one. We shall leave the
verification that this is indeed a parametrization as an exercise to the reader.

Remark: To do this in a rigorous fashion, one would have to refer to the exact mathematical
definition of an orientation in Challenge Problem Set 4. Once you are done with that, try
to see if you can prove that this is indeed a positive orientation in a rigorous sense.

The idea here is that flux integrals in Rn can be computed along n−1 dimensional manifolds. This
allow us to generalize the idea of a flux integral to R3 across a surface as follows.
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Definition 175. Let S be a surface in R3. An orientation S is a continuous choice of unit
normal vector n(p) at each point p on S. We can then define the following terms:

• The positive orientation across S is in the direction of the normal vector n.

• The negative orientation across S is in the direction of −n.

• We say that a surface with a choice of orientation is an oriented surface.

Definition 176. Let F be a vector field in R3, and let p = G(u0, v0) be a point on an
oriented surface S with parametrization G. The normal component of F at p is the dot
product

F(p) · n(p).

Definition 177. The vector surface integral over S is defined as∫ ∫
S

F · dS :=

∫ ∫
S

(F · n)dS. (267)

This is also known as the flux of F across S.

Remark 178. Compare with a vector line integral, in which we define∫
C

F · dr :=

∫
C

(F ·T)ds.

Definition 179. For a fluid with velocity vector field v, the flow rate across S is given by∫ ∫
S

v · dS. (268)

This makes intuitive sense since its basically:

∆x

∆t
·∆S =

∆V

∆t
= Volume of fluid that flows across the surface element ∆S over an infinitesimal time ∆t.

(269)
Furthermore, we have

Theorem 180. If −S denotes a surface with the opposite orientation, then∫ ∫
−S

(F · n)dS = −
∫ ∫

S

(F · n)dS. (270)

Recall that given a (regular) parametrization G(u, v) of S, then a normal vector at a point p =
(u0, v0) on S is given by

N(p) =
∂G

∂u
(u0, v0)×

∂G

∂v
(u0, v0). (271)

(This makes sense since G : D ⊂ R2 → S ⊂ R3, where D is the connected set of interest in which
the variables (u, v) ∈ D, and S refers to the corresponding manifold, in which is a surface in this
case.)

Note: Regular parametrization in Rogawski book means that the normal vector N is non-zero for
all u, v. Note that this can be weakened to be that the normal vector N is non-zero for all u, v
except on a set of measure zero.
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Additional Note: If we just require that our parametrization is indeed a usual parametrization in
the sense as discussed in Discussion Supplement 6, then such a condition for a parametrization to
be “regular” must then hold since as a parametrization, we require that [DG(u, v)] is injective for
all (u, v) ∈ D◦ (parameter domain), in which we can show (using theorems in Linear Algebra) that
this is equivalent to the fact that the normal vector is non-vanishing.

Definition 181. An oriented parametrization of a surface S is a regulara parametrization
G(u, v), with the orientation of S determined by the unit normal vector

n(p) =
N(p)

||N(p)||
. (272)

Then, given an oriented parametrization, we say that the positive orientation of S is in
the direction of the normal vector N. Furthermore, −N gives the negative orientation of S.

aSee footnote in the remark above.

Theorem 182. Not every surface is orientable, and not every parametrization is an oriented
parametrization.

See Challenge Problem Set 4 for an example!

Last but not least, we introduce a method to compute the vector surface integral as follows:

Theorem 183. Let G(u, v) : D → S ⊂ R3 be a positively oriented parametrization. Then.
we have ∫ ∫

S

(F · n)dS =

∫ ∫
D

F(G(u, v)) ·N(u, v) dudv. (273)

Remark: This differs a little from the conditions provided in Rogawski book, in which we have al-
ready introduced the relevant definition of parametrization. Thus, we have that given a parametriza-
tionG, the way in which the required properties are satisfied can be summarized in the table below:

Requirement How this is satisfied if G is a parametrization
G is one-one G : D◦ → S is injective
G is regular [DG(u, v)] is injective for all (u, v) ∈ D◦.

Except possibly for points on ∂D We usually only have to check for (u, v) ∈ D◦

and this excludes ∂D since D◦ = D \ ∂D.

Note that the expected properties of integrals on manifolds hold. For instance, if S = S1 ∪ · · · ∪ Sn

are disjoint (or intersects on a set of volume 0), we have∫ ∫
S

(F · n)dS =

∫ ∫
S1

(F · n)dS + · · ·+
∫ ∫

Sn

(F · n)dS. (274)

We shall cover an example on the computation of flux across curves in R2 and across surfaces in
R3 below.
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Example 184. Compute the flux of the vector field F : R2 → R2 given by

F

(
x
y

)
=

(
x2

y2

)
(275)

along a line segment from (3, 0) to (0, 3), oriented upwards. You do not have to verify
completely that any parametrization you provide is indeed one.

Suggested Solution: We first provide the positively oriented parametrization of the line
segment, given by

r(t) = ⟨3− t, t⟩ (276)

for 0 ≤ t ≤ 3. Indeed, this line segment C is oriented upwards. The corresponding flux
integral is given by ∫ 3

0

F(r(t)) ·N(t)dt. (277)

Thus, we proceed as follows:

• r′(t) = ⟨−1, 1⟩.

• N(t) = ⟨y′(t),−x′(t)⟩ = ⟨1, 1⟩.

• F(r(t)) ·N(t) = ⟨(3− t)2, t2⟩ · ⟨1, 1⟩ = t2 + (3− t)2.

• Then, we have ∫ 3

0

F(r(t)) ·N(t)dt =

∫ 3

0

t2 + (3− t)2dt = 18. (278)
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Example 185. Consider the following vector field in R3, given by

F

xy
z

 =

 x+ 3y5

y + 10xz
z − xy

 . (279)

Evaluate the flux across a unit sphere S2 in R3, oriented by outward-pointing normal
vectors along the sphere. You do not have to verify completely that any parametrization
you provide is indeed one.

Suggested Solution: Consider the following parametrization of the unit sphere G : [0, π)×
[0, 2π)→ S2 ⊂ R3, given by

G

(
ϕ
θ

)
=

sin(ϕ) cos(θ)
sin(ϕ) sin(θ)

cos(ϕ)

 . (280)

One can compute the normal vector N(ϕ, θ), given by

N(ϕ, θ) =
∂G

∂ϕ
× ∂G

∂θ

=

cos(ϕ) cos(θ)
cos(ϕ) sin(θ)

cos(ϕ)

×
− sin(ϕ) sin(θ)

sin(ϕ) cos(θ)
0


=

sin2(ϕ) cos(θ)
sin2(ϕ) sin(θ)
sin(ϕ) cos(ϕ)


(281)

We then proceed to compute F ·N as follows:

F(G(ϕ, θ)) ·N(ϕ, θ)

=

 sin(ϕ) cos(θ) + 3 sin5(ϕ) sin5(θ)
sin(ϕ) sin(θ) + 10 sin(ϕ) cos(θ) cos(ϕ)
cos(ϕ)− sin(ϕ) cos(θ) sin(ϕ) sin(θ)

 ·
sin2(ϕ) cos(θ)
sin2(ϕ) sin(θ)
sin(ϕ) cos(ϕ)


= sin3(ϕ) cos2(θ) + 3 sin7(ϕ) sin5(θ) cos(θ) + sin3(ϕ) sin2(θ) + 10 sin3(ϕ) cos(ϕ) cos(θ) sin(θ)

+ cos2(ϕ) sin(ϕ)− sin3(ϕ) cos(ϕ) sin(θ) cos(θ)

= sin(ϕ)+3 sin7(ϕ) sin5(θ) cos(θ)+10 sin3(ϕ) cos(ϕ) cos(θ) sin(θ)

− sin3(ϕ) cos(ϕ) sin(θ) cos(θ).
(282)

Now, note that upon integrating this expression for
∫ 2π

0

∫ π

0
F ·Ndϕdθ, note that

•
∫ 2π

0
sin5(θ) cos(θ)dθ = sin6(θ)

6 |θ=2π
θ=0 = 0, and

•
∫ 2π

0
sin(θ) cos(θ)dθ = sin2(θ)

2 |θ=2π
θ=0 = 0, while

•
∫ 2π

0

∫ π

0
sin(ϕ)dϕdθ = 2× 2π = 4π.

Thus, we have ∫ ∫
S

(F · n)dS = 4π. (283)

Note that one should check that the parametrization indeed gives the positive orientation
of the sphere. This can be done by looking at a specific point, say θ = 0 and ϕ = π/2. Note
that this corresponds to the point (1, 0, 0), and the corresponding normal vector is given by
N(π/2, 0) = (1, 0, 0), which is precisely parallel to the position vector of the point (1, 0, 0).
Thus, we can see that the parametrization is indeed a positively oriented one. If this is not,
we can instead use −N in the corresponding formula for flux (since I can just use the same
normal vector N to be integrated over the surface −S to get the right orientation, and this
is just the negative of the flux integral over the original surface S).
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Remark 186. Note that the tedious computation can be avoided if we use a tool that is (possibly)
going to be covered in the upcoming lecture, mainly, the Divergence Theorem. One can note that
∇ · F = 3, and that the volume of the unit sphere is given by 4

3π, in which 3 × 4
3π = 4π. This is

actually not a co-incidence! This will be further explained in the next Discussion Supplement.

Summarizing what we have from Discussion Supplement 8 and 9, we have the following types of
integrals for R3:

1. Scalar line integral along a curve C given by r(t) for a ≤ t ≤ b:∫
C

f(x, y, z)ds =

∫ b

a

f(r(t))||r′(t)||ds. (284)

2. Vector line integral (i.e work done) along a curve C given by r(t) for a ≤ t ≤ b:∫
C

F · dr =

∫ b

a

F(r(t)) · r′(t)dt. (285)

3. Vector line integral (i.e flux) across a curve C given by r(t) for a ≤ t ≤ b:∫
C

F · nds =
∫ b

a

F(r(t)) ·N(t)dt. (286)

4. Surface integral over a surface with parametrization G(u, v) and a parameter domain D:∫ ∫
S

f(x, y, z)dS =

∫ ∫
D

f(G(u, v))||N(u, v)||dudv. (287)

5. Vector surface integral across a surface with parametrization G(u, v) and a parameter do-
main D: ∫ ∫

S

F · dS =

∫ ∫
S

F · ndS =

∫ ∫
D

F(G(u, v)) ·N(u, v)dudv. (288)
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Exercises:

Exercise 33. Find a negatively oriented parametrization of the parabola y = −x2 for 0 ≤
x ≤ 1, oriented from (1,−1) to (0, 0).

Exercise 34. Compute the flux of the vector field F : R2 → R2 given by

F

(
x
y

)
=

(
−y
x

)
(289)

along the upper half of the unit circle, oriented clockwise.

Exercise 35. Compute the flux of the vector field F : R2 → R2 given by

F

xy
z

 =

yz
x

 (290)

across the plane 3x − 4y + z = 1, with 0 < x < 1 and 0 < y < 1, oriented with upward-
pointing normal.

Exercise 36. Consider the following vector field in R3, given by

F

xy
z

 =

 x+ 3y5

y + 10xz
z − xy

 . (291)

Evaluate the flux across an open unit disk with z = 0 in R3 (given by
{(x, y, 0) ∈ R3 : x2 + y2 < 1}), oriented by downward-pointing normal vectors
along the disk. You do not have to verify completely that any parametrization you provide
is indeed one.
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Partial Solutions/Hints:

• Exercise 33. Set r(t) = (t,−t2) for 0 ≤ t ≤ 1. Note that this goes from (0, 0) to (1,−1), and
thus is negatively oriented.

• Exercise 34. Use polar coordinates. Let r(θ) = ⟨cos(θ), sin(θ)⟩ for 0 ≤ θ ≤ π. You should
arrive at the fact that F ·N = 0, and thus the corresponding flux should be 0.

• Exercise 35. The corresponding parametrization is given by G(x, y) =

 x
y

1− 3x+ 4y

 . The

corresponding normal vector is given by

 3
−4
1

 (which shouldn’t be surprising since given a

plane ax+by+cz = d, the normal is along the direction ⟨a, b, c⟩). This is “upwards” directing
since the z−component is positive. The flux integral reduces to∫ 1

0

∫ 1

0

(13x− 13y − 4)dxdy = −4. (292)

• Exercise 36. Work through this using a polar coordinates (this should be somewhat similar
to Example 185). You should obtain that the flux is 0.
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10 Discussion 10

Summary for Lectures 22 - 24.

Instead of going upwards from Lecture 22 to 24 in a sequential order, I will first deal with the tech-
nicalities of a manifold with boundary, introduce the Stokes’ theorem in 3D, and then specializing
them to the (Divergence and) Stokes’ theorem in 2D (which are both known as Green’s theorem).

Definition 187. A subset M ⊂ Rn is a differentiable k−dimensional manifold
with boundary embedded in Rn if for every z ∈M , we have either:

(i) There exists an open neighborhood U ⊂ Rn such that there exists a C1−mapping
F : U → Rn−k such that

• M ∩ U = {z ∈ U : F (z) = 0} and

• [DF (z)] is surjective.

OR

(ii) There exists an open neighborhood V ⊂ Rn such that there exists a C1−mapping
F : U → Rm (with m ≥ n− k) with the following properties:

• G(z) = 0

• M ∩ V = {z ∈ V : G(z) ≥ 0} anda

• [DG(z)] is surjective.

Here, we say that the set of points z ∈M satisfying the second condition to be the boundary
of M (denoted also by ∂M , just like how we have discussed about boundary of sets in
general).

aInequality here refers to component-wise inequality; ie ⟨x, y⟩ ≥ 0 means x ≥ 0 and y ≥ 0.

Example: The upper half-space Hk ⊂ Rk is a closed set

Hk := {x = ⟨x1, ..., xk⟩ ∈ Rk : xk ≥ 0}. (293)

This is a k−dimensional manifold with boundary

∂Hk = {x = ⟨x1, ..., xk⟩ ∈ Rk : xk = 0}. (294)

One should take a look at the lecture example on computing the boundary of a “closed” unit cube
in R3 and verifying the appropriate definition.
We continue with the above definition as follows:

Definition 188.

• If z ∈ ∂M (ie satisfies the second condition), then we say that z is a corner point of
co-dimension m.

• In the special case of m = 1, we then say that z is in the smooth boundary of M
(∂sM).

• The set of corner points that are not in ∂sM is called the non-smooth boundary of
M .
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We have the following properties for these smooth boundaries as recorded below:

Proposition 189.

• The smooth boundary ∂sM is a (k − 1)−dimensional manifold.

• The non-smooth boundary of M has a (k − 1)-dimensional volume of 0.

Before we present Stokes’ theorem, here is a technicality that we have to deal with

Definition 190. For an oriented surface S, the boundary orientation ∂S is chosen such that
if your feet is at a point p ∈ S, and your head is where the head of n(p) is (recall that n
is already determined, given an orientation of the surface S), then the orientation of ∂S is
chosen such that S is always to your left.

We then have the Stokes’ theorem below:

Theorem 191. (Stokes’ Theorem.) Let G(u, v) : D → R3 be a positively oriented
parametrization of a surface S. The orientation of ∂S is then determined by Definition
190 above. Suppose that F is a smooth vector field in a solid region W containing S, then∮

∂S

F · dr =

∫ ∫
S

curl(F) · dS. (295)

Definition 192. A closed surface is a surface that has no boundary. That is, ∂S = ∅.

Corollary 193. Let S be a closed surface. Then,∫ ∫
S

curl(F) · dS =

∮
∂S=∅

F · dr = 0 (296)

Example: A unit sphere in R3 is a closed surface.

Definition 194. Let F be a vector field defined on a region W ⊂ R3. Suppose that F =
curl(A) for some vector field A in R3. Then, we say that A is the vector potential of F on
W.

As a corollary, we have the following computations:

Corollary 195. If A is a vector potential of F on W , then under the conditions in Theorem
191, we have ∫ ∫

S

F · dS =

∫ ∫
S

curl(A) · dS =

∮
∂S

A · dr =

∫ ∫
S′

F · dS (297)

In other words, the surface integral of F is surface-independent (ie the same over S and S′,
provided that they share the same boundary ∂S = ∂S′).

Furthermore, we have a corollary of the above corollary below:

Corollary 196. If F has a vector potential A on W , and S is a closed surface in W , we then
have ∫ ∫

S

F · dS =

∮
∂S=∅

A · dr = 0. (298)



Winter 22 MATH32BH Discussion Supplements 90

Remark 197.

• For Theorem 191, we are given F and asked to compute
∮
∂S

F · dr. Thus, we just compute it
using Theorem 191 and the corresponding curl(F). No vector potentials are involved.

• For Corollary 195, you are asked to compute
∫ ∫

S
F · dS. To apply the “reverse” of Stokes’

theorem (to convert this to a line integral), we will need to find a corresponding vector
potential A to “uncurl F”.

In R2, we have the following specialization (by looking at F = ⟨Fx, Fy, 0⟩):

Theorem 198. (Green’s Theorem.) Let D be a region in R2 such that ∂D is a disjoint union
of simple closed curves, with ∂D oriented such that D is always to the left. Suppose that
F = ⟨F1, F2⟩ and let Fz = ⟨F1, F2, 0⟩ (embedding this vector into R3 with z = 0; thus Dz

refers to the corresponding 2−dimensional manifold (with boundary) embedded in R2),
then we have ∮

∂D

F · dr =

∫ ∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫ ∫
Dz

curl(Fz) · dS. (299)

Since the general form of divergence theorem is not covered till Lecture 25, we shall directly state
the equivalent version in R2 below:

Theorem 199. (Divergence Theorem in R2 a.k.a Green’s Theorem - Flux Form.) Let D be
a region in R2 such that ∂D is a simple closed curve, oriented counterclockwise. Suppose
F = ⟨F1, F2⟩ is a smooth vector field in D. Then, we have∮

∂D

(F · n) ds =
∫ ∫

D

div(F)dA. (300)

To end off, we shall include a computational tool related to the Stokes’ and Divergence theorems
below:

Recall that from Definition 188. we have that the positive orientation of a boundary of a region in
R2 is defined such that as you walk along the curve, the region appears on your left.

Definition 200. A simple closed curve C is a closed curve that does not intersect itself.

Theorem 201. (Jordan Curve Theorem.) A simple closed curve C in R2 splits R2 into
exactly two regions - an interior region D and an exterior region R2 \D.

Theorem 202. (Addition of Circulation.) Let D be a region in R2 such that ∂D is a simple
closed curve, oriented counterclockwise. If we decompose a domain D = D1 ∪D2 in which
D1 and D2 only intersects on their boundaries ∂D1 and ∂D2. Then, we have∮

∂D

F · dr =

∮
∂D1

F · dr+
∮
∂D2

F · dr. (301)

With all our concepts in, let us look at a couple of examples!
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Example 203. Let F be a vector field in R2 given by

F

(
x
y

)
=

(
sin(x)
x2y3

)
. (302)

Use Stokes’ Theorem to the circulation of F over a triangle ∆ with vertices (0, 0), (0, 2) and
(2, 2).

Suggested Solution: Appeal to Green’s Theorem (else you are forced to do three separate
line integrals!). We then have∮

∂∆

F · dr =

∫ ∫
∆

(
∂F1

∂y
− ∂F2

∂x

)
dA. (303)

One can compute that
∂F1

∂y
− ∂F2

∂x
= 2xy3.

Then, we have ∮
∂∆

F · dr =

∫ ∫
∆

(
∂F1

∂y
− ∂F2

∂x

)
dA

=

∫ 2

0

∫ x

y=0

2xy3dydx

=
1

2

∫ 2

0

x5dx =
16

3
.

(304)

Here, we note that the triangular region ∆ is parametrized by

∆ = {(x, y) ∈ R2 : 0 ≤ x ≤ 2 and 0 ≤ y ≤ x}. (305)
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Example 204. Let F be a vector field in R3 given by

F

xy
z

 =

 3y
−2x
3y

 . (306)

Compute the circulation of F over a circle x2 + y2 = 9 at z = 2 in R3, oriented clockwise
as viewed from above.

Suggested Solution: Let D be the circular disk {(x, y, 2) ∈ R3 : x2 + y2 ≤ 9} and C be the
aforementioned curve (with the positive orientation as prescribed to be clockwise viewed
by someone from above).

Note that Stokes’ theorem gives∮
∂D=−C

F · dr =

∫ ∫
D

curl(F) · dS. (307)

Note that we have written down ∂D = −C. This is because Stokes’ Theorem as in Theorem
191 gives an integral along ∂S with orientation chosen by Definition 190, ie such that
the surface is always on the left of someone traversing the curve along in the prescribed
direction, with that person’s head pointing in the positive z direction. This implies that∮

∂C

F · dr = −
∫ ∫

D

curl(F) · dS. (308)

To compute the surface integral, we first compute the curl(F), given by

curl(F) =

 3
0
−5

 . (309)

Recall that to evaluate a vector surface integral, we must first parametrize the surface D.
Consider the parametrization

G

(
r
θ

)
=

r cos(θ)r sin(θ)
2

 (310)

with 0 ≤ r ≤ 3 and 0 ≤ θ < 2π. One can then compute

∂G

∂r
=

cos(θ)
sin(θ)

0

 ,
∂G

∂θ
=

−r sin(θ)r cos(θ)
0

 , and
∂G

∂r
× ∂G

∂θ
=

0
0
r

 . (311)

Thus, we have ∫ ∫
D

curl(F) · dS =

∫ 3

0

∫ 2π

0

curl(F) ·
(
∂G

∂r
× ∂G

∂θ

)
dθdr

=

∫ 3

0

∫ 2π

0

−5rdθdr

= −45π.

(312)

Note: It is not clear if we should pick
(
∂G
∂r ×

∂G
∂θ

)
(ie the orientation of the parametrization

is positive) or −
(
∂G
∂r ×

∂G
∂θ

)
(ie the orientation of the parametrization is negative, and

thus we have to reverse its orientation (one possibility is to replace θ by −θ)). However,
referring back to Definition 190, to a person standing on the curve with their head pointing
in the positive z− direction, the head direction corresponds to the direction of positive
orientation (ie the normal that gives the positive orientation). This implies that we will
accept the normal vector with a positive z− component, and that is given by

(
∂G
∂r ×

∂G
∂θ

)
.

Thus, we have ∮
∂C

F · dr = 45π . (313)
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The diagram below helps one to visual this problem in full.
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Example 205. (Rogaswki 17.1, Problem 29). Referring to the diagram below, suppose that∮
C2

F · dr = 3π, and
∮
C3

F · dr = 4π. (314)

Use Green’s Theorem to determine the circulation of F around C1, assuming that ∂F2

∂x −
∂F1

∂y = 9 on the shaded region.

Suggested Solutions:

By Green’s Theorem, we have∮
∂D

F · dr =

∫ ∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫ ∫
D

9dA = 9 (25π − 2π) = 207π. (315)

For the region D, the boundary can be computed to give ∂D = C1 ∪ (−C2) ∪ (−C3). Here,
as long as one is consistent, you should always have this decomposition (with the same
sign). Consistent here refers to picking an orientation for the “surface” D embedded in R3,
in which if we pick the positive orientation to be outwards, then for a person with their
head pointing outwards, then the surface D must be to the left. Thus, for say C2, we note
that if we walk around the prescribed C2, then the surface D appears on that person’s right.
Thus, for the surface to appear on that person’s left, they should traverse in the direction of
−C2. Then, we have ∮

∂D

F · dr =

∫
C1

F · dr−
∫
C2

F · dr−
∫
C3

F · dr∫
C1

F · dr =

∮
∂D

F · dr+
∫
C2

F · dr+
∫
C3

F · dr

= 207π + 3π + 4π = 214π.

(316)
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Exercises:

Exercise 37. Compute the flux of the vector field F(x, y) = ⟨x3, y3+y⟩ out of the unit circle
in R2.

Exercise 38. Evaluate ∫ ∫
S

curl(F) · dS (317)

where F = ⟨x − y, y − z, x − z⟩ and S is the part of the paraboloid z = 4 − x2 − y2 with
z ≥ 0, oriented upwards.

Exercise 39. Let S be an oriented surface in R3, and let v ∈ R3 be a constant vector. Let
F be a vector field in R3 given by F(x, y, z) = ⟨x, y, z⟩. Prove that∫

∂S

(v × F) · dr = 2

∫
S

v · dS. (318)

Here, ∂S is oriented as how a boundary of a surface S should be oriented according to
Definition 190.
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Partial Solutions/Hints:

• Exercise 37. Appeal to Green’s Theorem (flux form)/Divergence Theorem. Compute divF =
3x2+3y2+1. The flux is given by

∫ ∫
Unit circle div(F)dA =

∫ ∫
Unit circle(3x

2+3y2+1)dA. Then,
change to polar coordinates to obtain 5π

2 as the solution.

• Exercise 38. The boundary of S is the circle C in the xy−plane, centered at (0, 0) with radius
2 and oriented counterclockwise. Thus, C can be parametrized by r(t) = ⟨2 cos(θ), 2 sin(θ), 0⟩
for 0 ≤ θ ≤ 2π. By Stokes’ theorem, we have

∫ ∫
S
curl(F) ·dS =

∫
C
F ·dr =

∫ 2π

0
4 sin2(θ)dθ =

4π.

• Exercise 39. By Stokes’ Theorem, this is just a computation question: ie show that curl(v ×
F) = 2v. Do this with the given F and set v = ⟨a, b, c⟩ where a, b, and c does not depend on
either x, y, or z.
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