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Motivation

Gravity-Driven Particle-Laden Flow

Experimental Setup:

Inclined Slope

Negatively buoyant
monodisperse particles (i.e
glass beads) mixed with oil.

Mixture of particles and oil
added with a gate before
the start of the experiment.

Release the gate to start.
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Motivation

h(x, t) : Height of the slurry mixture.
ϕ0(x, t) : z−averaged particle volume fraction.
x : Distance downstream (from the gate).

Assumptions: Fast Equilibrium + Lubrication
Assumption.

Conservation of suspension volume:

∂th+ ∂xF (h, h0) = 0.

Conservation of the number of particles:

∂t(hϕ0) + ∂xG(h, hϕ0) = 0.

Functional form of flux functions:

F (h, hϕ0) = h3f

(
hϕ0

h

)
= h3f(ϕ0),

G(h, hϕ0) = h3g

(
hϕ0

h

)
= h3g(ϕ0).

Issue: f and g are computationally expensive to evaluate.
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Motivation

To evaluate f(ϕ0) and g(ϕ0) at a single point ϕ0, one has to

1. Numerically solve the following nonlinear ODE for
(ϕ(s), σ(s)), s ∈ [0, 1]:
ϕ′(s) =

(−B2 + (B2 + 1)ϕ(s) + ρsϕ(s)
2)(ϕm − ϕ(s))

σ(s)(ϕm + (B1 − 1)ϕ(s))
H(ϕ(s))H(ϕm − ϕ(s)),

σ′(s) = −1− ρsϕ(s),

σ(0) = 1 + ρsϕ0,

σ(1) = 0,

2. Compute velocity using u(s) = µl

∫ s
0 σ(s)

(
1− ϕ(s)

ϕm

)2
ds.

3. Compute f(ϕ0) =
∫ 1
0 u(s)ds.

4. Compute g(ϕ0) =
∫ 1
0 u(s)ϕ(s)ds.

Issue: f and g are computationally expensive to evaluate.
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Problem Statement

Given:{
ut + (F0(u, v))x = 0,

vt + (G0(u, v))x = 0,

with given initial data
(u, v)(0, x).

Can we approximate (F,G)
with (F̃ , G̃) such that{

ũt + (F̃ (ũ, ṽ))x = 0,

ṽt + (G̃(ũ, ṽ))x = 0,

with the same initial data
(ũ, ṽ)(0, x)

yield solutions are sufficiently close in the following sense:

L1 stability of L1 ∩BV solution with respect to flux
functions, and
Structural Stability of Riemann Problems; ie solutions with
initial data of the form

(u, v)(0, x) =

{
(ul, vl) for x < 0,

(ur, vr) for x > 0.
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Main Result

Consider: {
ut + (F0(u, v))x = 0,

vt + (G0(u, v))x = 0,

with Riemann initial data

(u, v)(0, x) =

{
(ul, vl) for x < 0,

(ur, vr) for x > 0,

for (t, x) ∈ [0,∞)× R, U ⊂ R2 open, and F0, G0 ∈ C2(U).
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Main Result

Assumptions: (F0, G0) forms a

(i) Strictly hyperbolic system in U :

Jacobian matrix J(u, v;F0, G0) =

(
(F0)u (F0)v
(G0)u (G0)v

)
possess

two distinct real eigenvalues for each (u, v) ∈ U .

(ii) Genuinely non-linear system in U : For k ∈ {1, 2}
∇ λk︸︷︷︸

k-Eigenvalue

(u, v;F0, G0) · rk︸︷︷︸
k-Right Eigenvector

(u, v;F0, G0) ̸= 0.

Convention: λ1 < λ2.

(iii) Uni-directional system in U : Either

(F0)v(u, v) ̸= 0 for all (u, v) ∈ U or
(G0)u(u, v) ̸= 0 for all (u, v) ∈ U .

Perturbations: {
F̃ = F0 + Fδ,

G̃ = G0 +Gδ.
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Main Result

Theorem (Generic Approximation Theorem & Structural Stability.)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular
manifold assumption. For almost every (ul, vl) ̸= (ur, vr) ∈ U , consider
the system with Riemann initial data such that there is a unique
double-wave entropy solution. Then, for any compact subset K ⊂ U
containing (ul, vl) and (ur, vr) in its interior,

1 The unperturbed system satisfies the transversality property on K,

2 There exists ε1, ε2 > 0 such that for any perturbations
(Fδ, Gδ) ∈ C2(K)2 with ∥(Fδ, Gδ)∥C2(K)2 < ε1, the corresponding
perturbed 2× 2 system admits a unique double-wave entropy
solution with an intermediate state (ũ∗, ṽ∗) ∈ int(K) satisfying
∥(ũ∗, ṽ∗)− (u∗, v∗)∥2 < ε2.

3 The perturbed system satisfies the transversality property on the
same compact set K.
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Main Result

Roughly speaking, this translates to:

For a system satisfying assumptions (i), (ii), (iii), and the regular
manifold assumption, for almost every (generic) Riemann initial
data, unique solutions and their structures (shock/rarefactions) are
preserved upon a sufficiently small C2 perturbation to the flux
functions.

Furthermore, the “amplitudes” of shock and rarefaction upon
perturbation are only perturbed by a small amount.
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Crash Course: 2× 2 System

General System:

{
ut + (F (u, v))x = 0,

vt + (G(u, v))x = 0.

Riemann initial data:

(u, v)(0, x) =

{
(ul, vl) for x < 0,

(ur, vr) for x > 0,

Shock:

u; v(x, t)

x

Rarefaction:

u; v(x, t)

x

and Lax Entropy Conditions.
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Crash Course: 2× 2 System

State Space (u, v) Analysis :
Given a state (ul, vl),

(Shocks) Hugoniot loci: (Rankine-Hugoniot) All (u, v)

satisfying

(
F (u, v)− F (ul, vl)
G(u, v)−G(ul, vl)

)
= s

(
u− ul
v − vl

)
for some s.

Equivalently,

(F (u, v)− F (ul, vl))(v − vl)− (G(u, v)−G(ul, vl))(u− ul) = 0.

Required to satisfy 1-wave Lax Entropy condition.

1-Rarefaction Curves: All (u, v) solving
d

dλ
(u(λ), v(λ)) = r1(u(λ), v(λ))

(u(λ(ul, vl)), v(λ(ul, vl))) = (ul, vl)

Integral curves of the right eigenvector r1.
Solve for increasing λ.
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Crash Course: 2× 2 System

State Space (u, v) Analysis :
Given a state (ur, vr),

(Shocks) Hugoniot loci: (Rankine-Hugoniot) All (u, v)

satisfying

(
F (u, v)− F (ur, vr)
G(u, v)−G(ur, vr)

)
= s

(
u− ur
v − vr

)
for some s.

Equivalently,

(F (u, v)− F (ur, vr))(v − vr)− (G(u, v)−G(ur, vr))(u− ur) = 0.

Required to satisfy 2-wave Lax Entropy condition.

2-Rarefaction Curves: All (u, v) solving
d

dλ
(u(λ), v(λ)) = r2(u(λ), v(λ))

(u(λ(ul, vl)), v(λ(ul, vl))) = (ul, vl)

Integral curves of the right eigenvector r2.
Solve for decreasing λ.
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Crash Course: 2× 2 System

Constructing Composite Solutions:

(ul, vl)
Hugoniot Locus−−−−−−−−−→

1−shock
(u∗, v∗)

Rarefaction Curve−−−−−−−−−−→
2−rarefaction

(ur, vr)︸ ︷︷ ︸
Shock-Rarefaction Solution

v

u

Hugoniot Loci

Rarefaction Curve

(ul, vl)
(ur, vr)

(u∗, v∗)

Shock-Rarefaction u; v

x
ul

u∗

ur
vl

v∗
vr
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2× 2 System

Unstable Case I: Single Wave Solution.

(ul, vl)
Hugoniot Locus−−−−−−−−−→

1−shock
(u∗, v∗) = (ur, vr)︸ ︷︷ ︸

Single Shock

v

u

Hugoniot Loci

Rarefaction Curve

(ul, vl)

(u∗, v∗) = (ur, vr)

Single Shock u; v

x
ul

ur
vl

vr
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2× 2 System

Unstable Case II: Self-Intersecting Hugoniot Loci.

(ul, vl)
Hugoniot Locus−−−−−−−−−→

1−shock
(u∗, v∗)

Self-Intersecting Hugoniot Locus−−−−−−−−−−−−−−−−−−−→
2−shock

(ur, vr)︸ ︷︷ ︸
Double Shock

v

u

Hugoniot Loci

Rarefaction Curve

(ul, vl)
(ur, vr)

(u∗, v∗)

u; v

x
ul

u∗

ur
vl

v∗
vr
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2× 2 System

Unstable Case III: Singular (δ) Shock - Intersection at ∞.
To be interpreted in the sense of distributions.
(Wang and Bertozzi, 2014.)

(ul, vl)
Hugoniot Locus−−−−−−−−−→

1−shock
∞ Hugoniot Locus←−−−−−−−−−

2−shock
(ur, vr)︸ ︷︷ ︸

Singular Shock

v

u

Hugoniot Loci

Rarefaction Curve

(ul, vl)

(ur, vr)

u; v

x
ul

ur
vl

vr
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2× 2 System

Case IV: Singular Shock - Self-intersecting at given states.
(Keyfitz and Kranzer, 1990.)

Hugoniot Loci is not a manifold (locally ’×’, not Euclidean).
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Regular Manifold Assumption

Recall: Hugoniot loci connects all (u, v) from a given state (ug, vg)

(F (u, v)− F (ug, vg))(v − vg)− (G(u, v)−G(ug, vg))(u− ug) = 0.

Define the Hugoniot Objective Function:

H(ug,vg) = (F (u, v)−F (ug, vg))(v−vg)− (G(u, v)−G(ug, vg))(u−ug).

Hugoniot locus is the zero level set of H(ug ,vg).

Regular Manifold Assumption

The Jacobian map (dH(ug ,vg))(u,v) : R2 → R given by(
DuH(ug ,vg)(u, v) DvH(ug ,vg)(u, v)

)
is surjective for each

(u, v) ̸= (ug, vg) on the Hugoniot locus.

Always not satisfied at (u, v) = (ug, vg).

By the Regular Value Theorem, the Hugoniot locus
restricted on U \ {(ug, vg)} is a C1 manifold.
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Transversality

LetM and N be submanifolds of Rn.

Definition: Transverse Intersection

We say thatM and N intersects transversely if for every
x ∈M∩N ,

TxM+ TxN = Rn.

Notation: M ⋔ N .
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Transversality Property

Let K be a compact subset of U containing the given left and
right states (ul, vl) ̸= (ur, vr).

Definition: Transversality Property

We say that the 2× 2 system with Riemann initial data given by
(ul, vl) and (ur, vr) as left and right states satisfies the
transversality property on K if for the “correct” curves Wl

(from (ul, vl)) and Wr (from (ur, vr)) intersecting at
(u∗, v∗) ̸= (ul, vl) or (ur, vr), we have

Wl ⋔Wr.

v

u

(ul, vl)
(ur, vr)

(u∗, v∗)

Double Shock
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Main Result

Theorem (Generic Approximation Theorem & Structural Stability.)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular
manifold assumption. For almost every (ul, vl) ̸= (ur, vr) ∈ U , consider
the system with Riemann initial data such that there is a unique
double-wave entropy solution. Then, for any compact subset K ⊂ U
containing (ul, vl) and (ur, vr) in its interior,

1 The unperturbed system satisfies the transversality property on K,

2 There exists ε1, ε2 > 0 such that for any perturbations
(Fδ, Gδ) ∈ C2(K)2 with ∥(Fδ, Gδ)∥C2(K)2 < ε1, the corresponding
perturbed 2× 2 system admits a unique double-wave entropy
solution with an intermediate state (ũ∗, ṽ∗) ∈ int(K) satisfying
∥(ũ∗, ṽ∗)− (u∗, v∗)∥2 < ε2.

3 The perturbed system satisfies the transversality property on the
same compact set K.

Structural Stability in Systems of Conservation Laws 22 / 80



Step I: Implicit Function Theorem on Banach Spaces

Theorem A. (Structural Stability)
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Step I: Implicit Function Theorem on Banach Spaces

Proof Sketch (Persistence of Existence):

Hugoniot Objective Function H(u, v;ug, vg, F,G) given by

H(u, v;ug, vg, F,G)

= (F (u, v)− F (ug, vg))(v − vg)− (G(u, v)−G(ug, vg))(u− ug).

Hugoniot locus: All (u, v) such that H(u, v;ug, vg, F,G) = 0.
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Step I: Implicit Function Theorem on Banach Spaces

Rarefaction Curves:

Rarefaction ODEs:
d

dλ
(u(λ), v(λ)) = rk(u(λ), v(λ))

(u(λ(ug, vg)), v(λ(ug, vg))) = (ug, vg)

Use uni-direction assumption (iii) to normalize the 2nd
component of the right eigenvector to be 1.

Obtain a single ODE “du
dv = du/dλ

dv/dλ”:
d

dv
uk(v;F,G) = Ξ(uk(v;F,G), F,G)

uk(vg) = ug.

Rarefaction Objective Function:

Rk(u, v;ug, vg, F,G) = u− uk(v;ug, vg, F,G).
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Step I: Implicit Function Theorem on Banach Spaces

Rarefaction Objective Function:

Rk(u, v;ug, vg, F,G) = u− uk(v;ug, vg, F,G)

Interpretation: Signed Distance of u-coordinate to rarefaction
curve integrated up to v.

(ug, vg)

(u, v)
(uk(v), v)

Value of Rk

v

u

Rarefaction Curve

k−Rarefaction curve = Zero-level set of Rk.
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Step I: Implicit Function Theorem on Banach Spaces

v

u

Hugoniot Loci

Rarefaction Curve

(ul, vl)
(ur, vr)

(u∗, v∗)

Shock-Rarefaction

Example: Unique intermediate state (u∗, v∗) and unperturbed
fluxes (F0, G0) satisfy{

H(u∗, v∗, F0, G0;ul, vl) = 0,

R2(u
∗, v∗, F0, G0;ur, vr) = 0.
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Step I: Implicit Function Theorem on Banach Spaces

Example: Unique intermediate state (u∗, v∗) and unperturbed
fluxes (F0, G0) satisfy{

H(u∗, v∗, F0, G0;ul, vl) = 0,

R2(u
∗, v∗, F0, G0;ur, vr) = 0.

Apply Implicit Function Theorem on Banach Spaces to

hr(u, v, F,G) :=

{
H(u,v,F,G;ul, vl) = 0,

R2(u,v,F,G;ur, vr) = 0.

with (u, v) ∈ K and (F,G) ∈ C2(K)2 to obtain a map
M : C2(K)2 → K such that{

H(M(F,G), F,G;ul, vl) = 0,

R2(M(F,G), F,G;ur, vr) = 0.

with M(F0, G0) = (u∗, v∗) in a C2(K)2 neighborhood of (F0, G0).
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Step I: Implicit Function Theorem on Banach Spaces

C2(K)2

(F0, G0)

K

U

(ul, vl)

(ur, vr)

(u∗, v∗)

K

( )
O
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Transition to Step II

{
H(M(F,G), F,G;ul, vl) = 0,

R2(M(F,G), F,G;ur, vr) = 0.

To apply Implicit Function Theorem on Banach Spaces, we
need to check the invertibility of a Jacobian map (matrix)
D(u,v)hr(u

∗, v∗, F0, G0) : R2 → R2, given by(
DuH(u∗, v∗, F0, G0;ul, vl) DvH(u∗, v∗, F0, G0;ul, vl)
DuR2(u

∗, v∗, F0, G0;ur, vr) DvR2(u
∗, v∗, F0, G0;ur, vr)

)
.

If Wl = Hugoniot locus from (ul, vl) and
Wr = Rarefaction curve from (ur, vr), this is equivalent to

Wl ⋔Wr = R2.
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Transition to Step II

Recall:

Theorem A. (Structural Stability)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular
manifold assumption. For given states (ul, vl) ̸= (ur, vr) ∈ U , consider
the system with Riemann initial data such that there is a unique
double-wave entropy solution. Then, for any compact subset K ⊂ U
containing (ul, vl) and (ur, vr) in its interior,

If The unperturbed system satisfies the transversality property on K,

Then There exists ε1, ε2 > 0 such that for any perturbations
(Fδ, Gδ) ∈ C2(K)2 with ∥(Fδ, Gδ)∥C2(K)2 < ε1, the corresponding
perturbed 2× 2 system admits a unique double-wave entropy
solution with an intermediate state (ũ∗, ṽ∗) ∈ int(K) satisfying
∥(ũ∗, ṽ∗)− (u∗, v∗)∥2 < ε2.

Moreover, The perturbed system satisfies the transversality property on the
same compact set K.
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Transition to Step II

Theorem B. (Transversality is Generic.)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular
manifold assumption. For almost every (ul, vl) ̸= (ur, vr) ∈ U , consider
the system with Riemann initial data such that there is a unique
double-wave entropy solution. Then, for any compact subset K ⊂ U
containing (ul, vl) and (ur, vr) in its interior, we

Get: The unperturbed system satisfies the transversality property on K.
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Transition to Step II

Theorem A + Theorem B = Main Theorem.

Theorem. (Generic Approximation Theorem & Structural Stability.)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular
manifold assumption. For almost every (ul, vl) ̸= (ur, vr) ∈ U , consider
the system with Riemann initial data such that there is a unique
double-wave entropy solution. Then, for any compact subset K ⊂ U
containing (ul, vl) and (ur, vr) in its interior,

1 The unperturbed system satisfies the transversality property on K,

2 There exists ε1, ε2 > 0 such that for any perturbations
(Fδ, Gδ) ∈ C2(K)2 with ∥(Fδ, Gδ)∥C2(K)2 < ε1, the corresponding
perturbed 2× 2 system admits a unique double-wave entropy
solution with an intermediate state (ũ∗, ṽ∗) ∈ int(K) satisfying
∥(ũ∗, ṽ∗)− (u∗, v∗)∥2 < ε2.

3 The perturbed system satisfies the transversality property on the
same compact set K.
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Step II: Parametric Transversality Theorems

Theorem B. (Transversality is Generic.)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular
manifold assumption. For almost every (ul, vl) ̸= (ur, vr) ∈ U , consider
the system with Riemann initial data such that there is a unique
double-wave entropy solution. Then, for any compact subset K ⊂ U
containing (ul, vl) and (ur, vr) in its interior, we

Get: The unperturbed system satisfies the transversality property on K.
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Step II: Parametric Transversality Theorems

Let X and Y be Cr manifolds, and Z be a Cr submanifold of Y
for r ≥ 1.

Definition: Transversality of a Map

Let f : X → Y be a Cr map. We say that f is transverse to Z if
for every a ∈ f−1(Z), we have

df(TaX ) + Tf(a)Z = Tf(a)Y.

Notation: f ⋔ Z.

Intuition: “f(X ) ⋔ Z”.

Z

X

f f(X )
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Step II: Parametric Transversality Theorems

Typical genericity arguments utilize:

Thom’s Parametric Transversality Theorem

Let X ,P, and Y be Cr manifolds and Z be a Cr submanifolds of
N . Consider

The map F : X × P → Y, and
The associated parametric maps Fp : X → Y for each p ∈ P.

Suppose that

1 r > max{0,dimY + dimZ − dimX},
2 The map (x, p) 7→ Fp(x) is C

r, and

3 F ⋔ Z.
Then, for almost every p ∈ P, Fp ⋔ Z.
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Step II: Parametric Transversality Theorems

v

u

Hugoniot Loci

Rarefaction Curve

(ul, vl)
(ur, vr)

(u∗, v∗)

Shock-Rarefaction

Strategy 1: hr(·;ul, vl, ur, vr) : U → R2 with

hr(u, v;ul, vl, ur, vr) :=

{
H(u, v;ul, vl),

R2(u, v;ur, vr).

Recall: hr(u∗, v∗;ul, vl, ur, vr) = 0.
Hope: hr(·;ul, vl, ur, vr) ⋔ {(0, 0)} for almost every
(ul, vl) ̸= (ur, vr).
Conclude: At each intersection point =⇒ transverse intersection.
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Step II: Parametric Transversality Theorems

Define ∆U2 = {(ul, vl, ur, vr) : (ul, vl) ̸= (ur, vr)}.
To apply Thom’s Parametric Transversality Theorem, we need
to check that

hr : U︸︷︷︸
Allowed Intersection Points

× (U2 \∆U2)︸ ︷︷ ︸
Parameters: Left and Right States

→ R2

satisfies hr ⋔ {(0, 0)}.

Then, hr(·;ul, vl, ur, vr) ⋔ {(0, 0)} for almost every
(ul, vl, ur, vr) ∈ U2 \∆U2 .

!

Hugoniot Loci from (ug, vg) are manifolds on U \ (ug, vg).
(i.e Keyfitz-Kranzer system.)

Structural Stability in Systems of Conservation Laws 38 / 80



Step II: Parametric Transversality Theorems

Define ∆U2 = {(ul, vl, ur, vr) : (ul, vl) ̸= (ur, vr)}.
To apply Thom’s Parametric Transversality Theorem, we need
to check that

hr : U︸︷︷︸
Allowed Intersection Points

× (U2 \∆U2)︸ ︷︷ ︸
Parameters: Left and Right States

→ R2

satisfies hr ⋔ {(0, 0)}.
Then, hr(·;ul, vl, ur, vr) ⋔ {(0, 0)} for almost every
(ul, vl, ur, vr) ∈ U2 \∆U2 .

!

Hugoniot Loci from (ug, vg) are manifolds on U \ (ug, vg).
(i.e Keyfitz-Kranzer system.)

Structural Stability in Systems of Conservation Laws 38 / 80



Step II: Parametric Transversality Theorems

Define ∆U2 = {(ul, vl, ur, vr) : (ul, vl) ̸= (ur, vr)}.
To apply Thom’s Parametric Transversality Theorem, we need
to check that

hr : U︸︷︷︸
Allowed Intersection Points

× (U2 \∆U2)︸ ︷︷ ︸
Parameters: Left and Right States

→ R2

satisfies hr ⋔ {(0, 0)}.
Then, hr(·;ul, vl, ur, vr) ⋔ {(0, 0)} for almost every
(ul, vl, ur, vr) ∈ U2 \∆U2 .

!

Hugoniot Loci from (ug, vg) are manifolds on U \ (ug, vg).
(i.e Keyfitz-Kranzer system.)

Structural Stability in Systems of Conservation Laws 38 / 80



Step II: Parametric Transversality Theorems

Strategy 2: Puncture the domain U at (ul, vl) and (ur, vr) for
each given left and right states.

Set U(ul,vl,ur,vr) := U \ {(ul, vl), (ur, vr)} and define

ULR =
⋃

(ul,vl,ur,vr)∈U2\∆U2

U(ul,vl,ur,vr)︸ ︷︷ ︸
Intersection Points

×{(ul, vl, ur, vr)}︸ ︷︷ ︸
Parameters

.

Now, check hr : ULR→ R2 satisfies

hr ⋔ {(0, 0)}.
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Step II: Parametric Transversality Theorems

(ul, vl, ur, vr)

∈ U2 \∆U2

U \ {(ul, vl), (ur, vr)}
= U(ul,vl,ur,vr)

ULR =
⋃

(ul,vl,ur,vr)∈U2\∆U2

U(ul,vl,ur,vr) × {(ul, vl, ur, vr)}.

ULR is a 6-dimensional submanifold of R6.
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Step II: Parametric Transversality Theorems

Foliated Parametric Transversality Theorem

Let P and Y be Cr manifolds, and Z be a Cr submanifold of Y. Suppose that
for each p ∈ P, we consider a collection of Cr manifolds given by {Xp}p∈P
each with the same dimension dimX , and the following foliated set:

XP :=
⋃
p∈P

Xp × {p}. (1)

Consider the maps F : XP → Y and the associated map Fp : Xp → Y for each
parameter p ∈ P . Suppose that

1. r > max{0, dimY + dimZ − dimX},
2. XP is a Cr manifold with dimension dimXP = dimX + dimP,

3. T(x,p)XP = TxXp × TpP for each (x, p) ∈ XP,

4. The map (x, p) 7→ Fp(x) is C
r, and

5. F ⋔ Z.

Then, for almost every p ∈ P, Fp ⋔ Z.

□
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Step II: Parametric Transversality Theorems

(ul, vl, ur, vr)

∈ U2 \∆U2

U \ {(ul, vl), (ur, vr)}
= U(ul,vl,ur,vr)

(ul, vl, ur, vr)

∈ U2 \∆U2

U \ {(ul, vl), (ur, vr)}
= U(ul,vl,ur,vr)
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Main Result

Theorem (Generic Approximation Theorem & Structural Stability.)

Consider the system satisfying assumptions (i), (ii), (iii), and the regular
manifold assumption. For almost every (ul, vl) ̸= (ur, vr) ∈ U , consider
the system with Riemann initial data such that there is a unique
double-wave entropy solution. Then, for any compact subset K ⊂ U
containing (ul, vl) and (ur, vr) in its interior,

1 The unperturbed system satisfies the transversality property on K,

2 There exists ε1, ε2 > 0 such that for any perturbations
(Fδ, Gδ) ∈ C2(K)2 with ∥(Fδ, Gδ)∥C2(K)2 < ε1, the corresponding
perturbed 2× 2 system admits a unique double-wave entropy
solution with an intermediate state (ũ∗, ṽ∗) ∈ int(K) satisfying
∥(ũ∗, ṽ∗)− (u∗, v∗)∥2 < ε2.

3 The perturbed system satisfies the transversality property on the
same compact set K.
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hr( u, v︸︷︷︸
Double-Wave Solutions

;ul, vl, ur, vr︸ ︷︷ ︸
Generically

, F,G︸︷︷︸
Perturbation → Stable

)
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Existing Literature

L1 Stability:

(Holden and Holden, 1992.) L1 stability for scalar
conservation laws:

∥uf (t, ·)− ug(t, ·)∥L1 ≲ tLip(f − g).

Done using the front-tracking algorithm.

(Bianchini and Colombo, 2002.) L1 stability for systems:∥∥∥∥(uv
)
(t, ·)−

(
ũ
ṽ

)
(t, ·)

∥∥∥∥
L1

≲ C(F0,G0)C(F̃ ,G̃)d̂((F0, G0), (F̃ , G̃)).

Done using (semi-)standard PDE techniques on Riemann
semigroup.
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Existing Literature

Structural Stability of Riemann Problem:

(Schecter, Marchesin, and Plohr, 1994.)
Structurally Stable Riemann Solutions.

Conclusion depends on the given left and right states and
transversality condition of intersecting curves that could not be
checked a priori.
Done using viscous regularization, traveling waves, and phase
portrait analysis.

(Azevedo et. al., 2010 and Eschenazi et. al., 2025.)
Topological Approach for 2× 2 systems.

Quadratic flux and perturbations; some work in progress.
Similar issue with transversality condition.
Done by employing desingularization methods (motivated by
singularity theorem) specific to quadratic fluxes.
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Existing Literature

Genericity for Conservation Laws:

(Schaeffer, 1973.)
Schaeffer Regularity Theorem (for scalar conservation
laws): For almost any u(0, x) ∈ S(R), the solution is
piecewise smooth with a finite number of shock curves.

Only for scalar conservation laws; strong assumptions on initial
data.
Done using a transversality argument (differential topology).

(Caravenna and Spinolo, 2017.)
Schaeffer’s Regularity Theorem Does Not Extend to
Systems.

(Bressan, Chen, and Huang, 2024.)
Generic Singularities for 2D Pressureless Flow.

x ∈ R2, only for smooth initial data and a specific problem.
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Application I: p-system

(Wendroff, 1972 and Wendroff, 1972.){
ut + (p(v))x = 0,

vt − ux = 0.

Compressible Isentropic Flow in Lagrangian Coordinates:

Lagrangian Coordinates x

Velocity in Lagrangian Coordinates u ∈ R
Specific Volume v > 0

Pressure p(v) ∈ C2((0,∞))

Modelling Assumptions:

Thermodynamics : p′(v) < 0 for v > 0.

Experimental Evidence (Bethe, 1942): p′′(v) > 0 for v > 0.
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Application I: p-system

Jacobian Matrix:

J(u, v) =

(
0 p′(v)
−1 0

)

Assumptions:

(i) p′(v) < 0 for v > 0 implies strictly hyperbolic system in
(0,∞)× R.

(ii) p′′(v) > 0 for v > 0 implies genuinely non-linear system in
(0,∞)× R.

(iii) −1 ̸= 0 implies uni-directional system in (0,∞)× R.
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Application I: p-system

Manifold Assumption:

Hugoniot Objective Function:

H(u, v;ug, vg) = (u− ug)
2 + (p(v)− p(vg)) · (v − vg).

Jacobian:

(dH(ug ,vg))(u,v) =
(
2(u− ug) p′(v)(v − vg) + (p(v)− p(vg))

)
.

Show that (dH(ug ,vg))(u,v) : R2 → R is surjective for any
(u, v) ̸= (ug, vg) on the Hugoniot locus.

Physical Interpretation:

For a sufficiently good C2 approximation of the pressure relation
(on a compact subset), unique double-wave entropy solutions are
preserved.
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Application II: Gravity-Driven Particle-Laden Flow



ht +

h3f

(
hϕ0

h

)
︸ ︷︷ ︸

F (h,hϕ0)


x

= 0,

(hϕ0)t +

h3g

(
hϕ0

h

)
︸ ︷︷ ︸

G(h,hϕ0)


x

= 0.

f(ϕ0), g(ϕ0), ϕ0 ∈ [0, ϕm].
Physical Interpretation: ϕm = Maximum Packing Fraction.

If the assumptions of the theorem hold, by picking a
sufficiently good approximation of f and g, hence F and G,
unique double-wave entropy solutions are preserved.
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Application II-1: Interpolating Flux Functions

Algorithm:

1 Place a grid on ϕ0 = [0, ϕm] with ϕm = 0.610, say step size
∆ϕ0 = 0.001.

2 Solve the nonlinear ODE for ϕ0 = 0.001i for i = 1, · · · , 610 to
obtain f(ϕ0) and g(ϕ0).

3 Obtain f(ϕ0) and g(ϕ0) by interpolation.

4 Obtain f ′(ϕ0) and g′(ϕ0) by interpolation too (if needed).

Global Error for f = ∥f − fint∥C1(K) ≲ o(∆ϕ0)

∆ϕ0→0−−−−−→ 0

Interpretation:

The solutions exhibit structural stability for a sufficiently small grid
size, with solutions converging to the original system as grid size
goes to 0.
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Application II-2: Gravity-Driven Particle-Laden Flow

Fix α = 25◦. ϕ0 ∈ [0, ϕm],
ϕm = 0.61: Maximum packing fraction.
ϕc ≈ 0.503: Phase transition from settled to ridged.

Settled: ϕ0 < ϕc. Ridged: ϕ0 > ϕc.
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Fix α = 25◦. ϕ0 ∈ [0, ϕm],
ϕm = 0.61: Maximum packing fraction.
ϕc ≈ 0.503: Phase transition from settled to ridged.

Settled: ϕ0 < ϕc. Ridged: ϕ0 > ϕc.

Polynomial Approximations:

f(ϕ0) =

{∑10
j=1 β

S
f,j(ϕc − ϕ0)

j−1 for ϕ0 < ϕc,∑10
j=1 β

R
f,j(ϕ0 − ϕc)

j−1 for ϕ0 > ϕc,

and

g(ϕ0) =

{∑10
j=1 β

S
g,j(ϕc − ϕ0)

j−1 for ϕ0 < ϕc,∑10
j=1 β

R
g,j(ϕ0 − ϕc)

j−1 for ϕ0 > ϕc.
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βf = argminβf∈R20 ∥f −Xβf∥22 + λ∥f ′ −X′βf∥22

subject to the assumptions above (similar for g).

Physical “Constraints”:

(I) : f, f ′, f ′′, g, g′, and g′′ are continuous at ϕc,

(II) : f(0) =
µl

3
, g(0) = 0,

(III) : Values of f(ϕc) and g(ϕc),

(IV) : f(ϕm) = g(ϕm) = f ′(ϕm) = g′(ϕm) = 0.

Compare:

λ = 0 (not fitting for derivatives) and

λ = 0.03 (fitting for derivatives, obtained via leave-one-out
cross validation).
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βf = argminβf∈R20 ∥f −Xβf∥22 + λ∥f ′ −X′βf∥22

subject to the assumptions above (similar for g). Sampled Data

Points:

A couple of points close to ϕm,

A couple of points close to ϕc,

A couple of sparse points,

Points are in triplets to provide derivative information at the
middle point.

Optimization Algorithm:

Quadratic program with linear equality constraints.

Determine λ by using a leave-one-out cross validation
algorithm.
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Order of Phase Transition

C1 vs C2?

Asymptotically,
f(ϕ0), g(ϕ0) ∼ |ϕ0 − ϕc|β

with

β < 1 if α > 70.309◦

β ∈ (1, 2) if α ∈ (27.895◦, 70.309◦)

β > 2 if α < 27.895◦

It can be “numerically verified” that f(ϕ0) and g(ϕ0) are

C2 across ϕ0 = ϕc for α = 17◦.

C1 only across ϕ0 = ϕc for α = 30◦, 60◦, 80◦.

Furthermore, most parts of the proof suggest that the above
argument might work with the Sobolev Space W 2,∞(K) (i.e
“derivatives are Lipschitz continuous”).
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Application II-2: Gravity-Driven Particle-Laden Flow

Optimal λ from leave-one-out cross validation:
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Application II-2: Gravity-Driven Particle-Laden Flow

Quality of Approximation - Flux Function f :
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Application II-2: Gravity-Driven Particle-Laden Flow

Quality of Approximation - Flux Function g:
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Application II-2: Gravity-Driven Particle-Laden Flow

Quality of Approximation - Derivative of Flux Function f ′:
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Application II-2: Gravity-Driven Particle-Laden Flow

Quality of Approximation - Derivative of Flux Function g′:
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Application II-2: Gravity-Driven Particle-Laden Flow

Riemann Initial Data:

(h, ϕ0)(0, x) =

{
(1, 0.4) for x > 0,

(0.2, 0.4) for x < 0.

Solution for (h, ϕ0)(30, x):
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Application II-2: Gravity-Driven Particle-Laden Flow

Riemann Initial Data:

(h, ϕ0)(0, x) =

{
(1, 0.485) for x > 0,

(0.2, 0.485) for x < 0.

Solution for (h, ϕ0)(30, x):
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Application II-2: Gravity-Driven Particle-Laden Flow

Violating Genuine Nonlinearity
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Application II-2: Approximating Flux Functions

Computational Time for PDE Simulations,
∆x = 0.001,∆t = 0.0005, t = 30, x ∈ [−0.1, 4],

Interpolation: 45s.

Vectorized Polynomial Approximation: 984s.

Time to generate flux functions on a grid with ∆ϕ0 = 0.001:

156s.

Fix:

1 Generate sparse grid points.

2 Fit polynomials to f and g.

3 Pre-evaluate polynomials on a specified grid.

4 For any evaluation of f and g (especially in PDE simulations),
perform numerical interpolation.
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Application II-3: Comparing Models

Lubrication Assumption gives the same system of conservation
laws for both diffusive flux and shear-induced migration models:

ht +

(
h3f

(
hϕ0

h

))
x

= 0,

(hϕ0)t +

(
h3g

(
hϕ0

h

))
x

= 0.

Different models yield different pairs of flux functions f and g.

Observation: If the flux functions from different models are
sufficiently close, solutions to the Riemann problems are sufficiently
close!
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Application II-3: Comparing Models

Reference: A comparative study of dynamic models for
gravity-driven particle-laden flows. (Lee W.P. et. al, 2025.)

Authors: 2023 REU students, S.C. Burnett, L. Ding, A. L.
Bertozzi.

Accepted for publication in Applied Mathematics Letters,
2025.

α = 50◦, Equilibrium Profile - I.
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Application II-3: Comparing Models

α = 50◦, Equilibrium Profile - II.
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Application II-3: Comparing Models

α = 50◦, PDE Simulations.
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Conclusion and Discussion

Main Result: Under the usual assumptions and some
additional mild assumptions, unique double-wave entropy
solutions are preserved upon a sufficiently good approximation
of flux functions.

Understanding how each of the assumptions fails allows us to
predict properties that are not expected to be preserved upon
perturbation.
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Future Work

Generalizing the result to n× n systems.

(Wong and Bertozzi, 2016.)
n = 3: Bidensity/Bisize Particle Laden Flow
(Additional Parameter → Additional Conservation Law.)

General n× n using “more differential topology”.

Other Variants - Regularity:

Lower Regularity required for flux functions and their
perturbations.

Smooth except at finite points (corresponding to phase
transitions).

Perturbations to initial data (left and right states).
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Future Work

Allowing Linear Degenerate Waves:

Example: n = 3, Compressible Euler Equations for gas
dynamics.

Expectation: Preserved under the class of “shocks,
rarefactions, and contact discontinuities” for a class of
perturbations.

Violating Genuine Non-linearity:

(Liu, 1973.)
Alternative to Lax’s Entropy Condition → Liu’s Entropy
Condition.

Generalizing the above arguments for a different entropy
condition.

Numerical Schemes Motivated by Transversality.
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!

Thank you for your attention!

!
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